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Abstract

Continuous Sign Language Translation (SLT) is a challeng-
ing task due to its specific linguistics under sequential ges-
ture variation without word alignment. Current hybrid HMM
and CTC (Connectionist temporal classification) based mod-
els are proposed to solve frame or word level alignment. They
may fail to tackle the cases with messing word order corre-
sponding to visual content in sentences. To solve the issue,
this paper proposes a hierarchical-LSTM (HLSTM) encoder-
decoder model with visual content and word embedding for
SLT. It tackles different granularities by conveying spatio-
temporal transitions among frames, clips and viseme units. It
firstly explores spatio-temporal cues of video clips by 3D C-
NN and packs appropriate visemes by online key clip mining
with adaptive variable-length. After pooling on recurrent out-
puts of the top layer of HLSTM, a temporal attention-aware
weighting mechanism is proposed to balance the intrinsic re-
lationship among viseme source positions. At last, another
two LSTM layers are used to separately recurse viseme vec-
tors and translate semantic. After preserving original visual
content by 3D CNN and the top layer of HLSTM, it shortens
the encoding time step of the bottom two LSTM layers with
less computational complexity while attaining more nonlin-
earity. Our proposed model exhibits promising performance
on singer-independent test with seen sentences and also out-
performs the comparison algorithms on unseen sentences.

Introduction
This paper studies the problem of vision-based Sign Lan-
guage Translation (SLT), which bridges the communication
gap between the deaf mute and normal people. It is related
to several video understanding topics that targets to interpret
video into understandable text and language. To be specif-
ic, SLT is derived from single sign word recognition, which
is a kind of action recognition or video classification (Cai
et al. 2016). But in normal dialogues (i.e., sentence videos),
continuous sign dynamics usually lack word alignment. It is
difficult to precisely align sub-video clips to each sign word
and recognize them. Then on the other hand, SLT is similar
to video captioning in that the video is directly translated to
text sequences (Yao et al. 2015). The primary difference lies
in that video captioning uses grammar knowledge and se-
mantics coherence with feature representation of object(s),
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scene, motion or action for sentence generation, while SLT
emphasizes on semantic understanding with word-to-word
transition among independent sub-video clips. SLT suffers
the specific linguistics challenges, such as adverb modify-
ing verb, e.g., the adverb in phase “run quickly” is signed
by speeding the word “run” up; uncertain directional verbs
and positional signs between the signer and referent(s); un-
known words with finger spelling; non-hand features, e.g.,
facial expression and lip shape; etc. Learning visual word in
SLT is much more strict.

Our problem belongs to weakly supervised learning with
the lack of supervision on accurate temporal locations for
sign words. Several recent works made some success to
solve frame-level or gloss(word)-level alignment, such as
hybrid HMM and CTC embedded into deep learning (Koller,
Zargaran, and Ney 2017; Cui, Liu, and Zhang 2017). How-
ever, they are limited to a prerequisite that word label in
sentences is consistent to the order of corresponding visu-
al content. If the word order is reversed or messed as in
NMT (Neural Machine Translation, e.g. from English to
French (Bahdanau, Cho, and Bengio 2014)), they are un-
suitable to tackle sequential frame-level classification under
word labels in disorder for text generation.

Our work is free of such limitation. We adopt the encoder-
decoder framework, which respectively learns visual con-
tent and word embedding. More importantly, to effective-
ly encode the visual semantic, a Hierarchical LSTM-based
(HLSTM) model is proposed. The key idea of our model
is to build a multi-layered visual-semantic embedding ar-
chitecture with different granularities, i.e., frames, visemes
(sub-visual-word), visual-words and the entire video. Our
presupposition is tackling visual feature embedding of sub-
sign units, i.e., visemes. We seek for the high level represen-
tation of visemes and focus on the transition among these
visemes to avoid directly bridging the whole video frames
and natural language. In other words, our model is charac-
terized with a hierarchical and variable-sized temporal struc-
ture, which explores the spatio-temporal cues for variable-
sized chips of visemes.

The framework of our approach is illustrated in Figure 1.
A 3D CNN model (i.e., C3D (Tran et al. 2015)) is firstly
utilized to extract visual features. It’s because that in our
dataset, a sentence video often has many successive original
frames. Here, 3D CNN is more useful than 2D CNN to learn
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Figure 1: The general architecture of HLSTM. In our end-to-end model, we take the pre-trained C3D model for 3D CNN
feature extraction, and key clip mining is an online heuristic algorithm without deep training. It uses a zero-padding vector as
the beginning-of-sentence tag <BOS> to start, and terminates until it meets the ending symbol (.), namely <EOS> .
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Figure 2: The basic modular architecture of HLSTM.

spatio-temporal context, and it can avoid dependency atten-
uation of long sequence transmission in the LSTM learning.
Secondly, signs can be easily recognized by discriminative
gesture or upper-body skeleton variations that sparsely hide
in the videoes. To distinguish key (discriminative) and less-
important clips, we utilize an online adaptive key clip min-
ing method by optimizing residual square sum of previous
successive 3D CNN features and current feature, and cap-
ture their linear correlation. The motivation is to avoid over-
training with less-important clips that may degrade perfor-
mance.

Thirdly, to weaken less-important clips, three pooling s-
trategies are proposed to further capture the recurrent char-
acteristics of visemes by LSTM1 (the top LSTM layer of
the model). Besides, an attention-aware weighting mecha-
nism is proposed in the encoding stage along the time di-
mension. It balances the intrinsic relationship among source
positions related to the entire translated sentence. Finally,
when feature sequences are exhausted in encoding stage,
they arrive at the decoding stage. We respectively implement
visual and word embedding with LSTM2 and LSTM3 (the
bottom two LSTM layers of the model). LSTM2 is served
for visual representation in encoding stage and LSTM3 is
used to model word representation in decoding stage for se-
quence learning.

In a nutshell, we present a hierarchical encoder-decoder
framework to solve continuous SLT. Our end-to-end HLST-
M model is a mixture of CNN and RNN. It explores

visemes by online adaptive variable-length key clip segmen-
tation and temporal attention. With the mixed transition be-
tween viseme representations, HLSTM achieves a high-level
visual-semantic embedding learning.

Related work
This section reviews related work to SLT in three aspects:
hand-crafted feature, traditional recognition model, and cur-
rent prevalent deep feature and model.

Hand-crafted feature: Traditional feature representation
for SLT include depth based feature and visual feature (Pu,
Zhou, and Li 2016). Popular depth feature contains point
clouds (Wang et al. 2012) and surface normals (Lin et al.
2014). However, due to high cost and inconvenience of cal-
ibration, depth sensors and auxiliary devices are unpopu-
lar. Meanwhile, more and more researches focus on vision-
based recognition systems which only consider the associ-
ated RGB channels. Turning to visual feature, Hernandez-
Vela et al. presented the Bag-of-Visual-and-Depth-Words
for multimodal feature fusion (Hernández-Vela et al. 2012).
Tewari et al. employed the AdaBoost algorithm based on
HAAR-like features to integrate weaker classifiers into a
strong classifier (Tewari et al. 2015). HOG feature is also
applied for sign language recognition (Wang et al. 2015).

Traditional recognition model: As for isolated sign or
gesture classification, the SVM model was applied. For
instance, the Grassmann covariance matrix (GCM) mod-
el was employed as the kernel of SVM classifier (Wang
et al. 2016a). At the same time, temporal context were
also considered to acquire sequential dynamics. Celebi et
al. developed a weighted Dynamic Time Warping (DTW)
to optimize the discriminant ratio of joints between two
temporal sequences (Celebi et al. 2013). Similar features
can be grouped into clusters or blocks, termed as states.
The state transition is modeled using probability distri-
bution or graphical models, e.g. various Hidden Markov
Models (HMM) (Yang and Sarkar 2006; Guo et al. 2016;
2017), Hidden Conditional Random Fields (HCRFs) (Wang
et al. 2006), Autoregressive Models (AR) (Ishihara and Otsu
2004), etc. Among them, HMM is the most widely known.

Deep feature & model: Compared to above traditional
work, deep learning approaches have achieved impressed
success in computer vision. They are also prevalent in sign



language and gesture recognition, such as CNN (Huang et al.
2015; Camgoz et al. 2016), LSTM (Liu, Zhou, and Li 2016),
RNN, etc. For instances, a CNN-based multi-scale frame-
work was proposed to detect gesture (Neverova et al. 2016).
Molchanov et al. designed a 3D CNN extractor to jointly
represent both appearance and motion variation (Molchanov
et al. 2016). Two stream RNNs is designed to fuse multi-
modal features(Chai et al. 2015). Lefebvre et al. proposed
a bidirectional LSTM-RNN to tackle the preceding and fol-
lowing context of dynamic variation (Lefebvre et al. 2015).

The prevalent trend is to mix merits of CNN feature ex-
tractor and sequential learning models (i.e., RNN and LST-
M, even HMM), such as deep DNN & HMM (DDNN) (Wu
et al. 2016), temporal convolutions & bidirectional RN-
N (Pigou et al. 2015), recurrent 3D convolutional neural net-
work (R3DCNN) (Molchanov et al. 2016), etc. These mix-
ture approaches effectively model both spatial and temporal
context of motion variation. But most of them are designed
for isolated gesture or sign word recognition and cannot be
readily used for continuous sign sentence translation.

Then temporal boundaries of sign words in continuous
SLT have been extensively studied. There are sign spotting
and word alignment analysis, such as hybrid HMM and CTC
embedded into deep learning. Different from sign spotting,
our problem belongs to weakly supervised learning with the
lack of supervision on accurate temporal separation for sign
words. As for word alignment, Koller et al. embedded deep
CNN into the HMM framework to solve frame-level align-
ment (Koller, Zargaran, and Ney 2017). Cui et al. proposed
an LSTM & CTC to solve the gloss(word)-level alignmen-
t (Cui, Liu, and Zhang 2017). As mentioned in introduction,
the same prerequisite of these work is that word order in sen-
tences should be consistent with that of corresponding visual
clips. If the word is out of order to its corresponding visual
content, they are unsuitable for SLT. In contrast, our work is
not limited to this with the encoder-decoder framework.

Our Proposed Approach
We implement viseme-unit encoding and text decoding by
neural network models, where the input is the sequence of
video frames (f1, · · · , fN ), and the output is text transla-
tion, namely a sequence of text words (y1, · · · , ym). In the
model, we employ pre-trained C3D (Tran et al. 2015) mod-
el to obtain convolutional features. Then we segment key
and less-important sub-video clips by an online heuristic al-
gorithm. Next, after imposing pooling and attention-aware
mechanisms, our HLSTM encoder compacts less-important
video clips and summarizes key clips into a high level re-
current representation (viseme vectors), and finally the de-
coder stage outputs a sentence with a variable length. Key
clip mining and the HLSTM encoder are introduced below.

Online Key Clip Mining
Discriminative motion modalities or patterns always sparse-
ly hide among the whole video, which occur irregularly un-
der different conditions, such as speed, habit of signer, and
special constituents of sign word, etc. Different from extract-
ing key frames or volumes with fixed time interval (Wang et

al. 2016b; Zhu et al. 2016), here we adopt an online mining
approach to automatically obtain variable-length key clip-
s. We use the low rank approximation method in (Wang et
al. 2015) to get the linear correlation of consecutive frame
stream. The idea is to calculate the feature residual sum of
square (RSS) ε between previous frames and current frame.

Given video feature stream F = [f1,f2, · · · ,fn], we use
the correlation matrix M to calculate the residual error εc at
current feature fc. The subset of F from f1 to fc is denoted
as Fc = [f1,f2, · · · ,fc]. The Initialization are ε1 = 0 and
M = (fT1 f1)−1. At time step c, 2 ≤ c ≤ n, we compute the
correlation coefficient βc and residual error εc as follows:{
βc=MFc−1

Tfc

εc=(fc−Fc−1βc)T (fc−Fc−1βc)=
∥∥fc−Fc−1MFc−1Tfc∥∥2

(1)
Next we update the core matrix for next feature fc+1:

M =

[
M + βTc βcεc −βc/εc
−βTc εc 1/εc

]
(2)

where M summarizes the intrinsic linear correlation of the
feature set Fc, βc establishes the mapping relationship of
Fc−1 and fc (i.e., the relevant weight on each previous frame
by the measure M ), and Fc−1βc is the approximate recon-
struction of fc by utilizing Fc−1 at current time c. Finally,
we obtain ε = [ε1, · · · , εc, · · · , εn].
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Figure 3: Curve of RSS variable ε of a video. Each peak
point corresponds to a discriminative gesture of sign words.

Continuous variation of key clips are effective to mine real
motion patterns in SLT. Different from obtaining the optimal
subset of selected discrete frames in previous work, the RSS
curve is helpful to segment the key and less-important clips
with variable length (e.g., invalid fragment of the word-to-
word transition). As observed in Figure 3, each peak point
in the residual error curve indicates the local maximal gain
of accumulative error of consecutive variation. We remain
the monotonic increasing part of the curve of residual error
ε as the profits, as it cannot be replaced by previous frames
with the continuously increasing residual error. After that, ε
drops gradually along the monotonic decreasing part of the
curve. This means that the decreasing part could be linearly
reconstructed by previous frames with downward error.

We select those frames in each monotonically increasing
part of the residual error curve as a key clip and weaken the
negative effect of those frames in the monotonic decreasing
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Table 1: Parameter description
Symbol Description
N the number of original frames of a video
n the number of extracted features
n′ the number of selected features by G (·)
n′′ the number of encoding time steps ofLSTM2.

parts that are deemed as less-important clips. Our motiva-
tion is to avoid over-learning less-important clips, which will
prevent us to discover accurate sign modalities. The sum-
marizing less-important clips strategy is detailed in HLSTM
encoder.

Hierarchical LSTM Encoder
As shown in Figure 1, our HLSTM model is asymmetrical.
Besides that the encoding and decoding stages have different
lengths, i.e., a large number of frames versus a few words, its
encoding layers are variable-length. HLSTM aims at a com-
pact and effective visual representation for sign linguistics.

3-layer encoder The encoder uses both CNN and LSTM
modules to encode the input video frames (f1, · · · , fN ) into
a visual embedding representation V :

V = ψlstms[G (ψcnn(f1, · · · , fN ))]

= ψlstms[G (f1,f1, · · · ,fn)]
= ψLSTM3,LSTM2,LSTM1 [(f

′
1, · · · ,f ′

n′)]

= ψLSTM3,LSTM2(h̃1, · · · , h̃n′′)

= (v1, · · · , vn′′)

(3)

where G (·) denotes the key clip mining. As noted in Table 1,
N , n and n′ are variable lengths. In this paper, we denote the
average number of features of all training videos as lave and
set n′′ = lave. {h̃1, · · · , h̃n′′} is the inputs for LSTM2 de-
tailed in the following descriptions of polling and attention-
aware weighting mechanisms and {v1, · · · , vn′′} is the hid-
den states of LSTM3 on the encoding stage.

The HLSTM model is depicted in Figure 1 and 2 with a 3-
layer LSTM encoder architecture. The top LSTM1 is used
to obtain recurrent representation based on 3D conventional
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Figure 5: Attention-aware weighting mechanism.

features F = [f1,f2, ...,fn] extracted by the well-known
C3D model (Tran et al. 2015). After imposing pooling s-
trategy and attention-aware weighting, we shorten the recur-
rent features of LSTM1 into the length-n′′. Finally, we re-
spectively implement the visual and word embedding with
LSTM2 and LSTM3, where LSTM2 is chiefly served for
visual representation in encoding stage and LSTM3 is used
to model word representation in decoding stage for sequence
learning. LSTM2 and LSTM3 are applied in both the en-
coding and decoding stages. This manifests that their param-
eters are shared in two stages.

Pooling strategy Figure 1 unrolls HLSTM over time. Af-
ter LSTM1, its outputs {ht}(t ∈ [1, n]) have to be short-
ened for LSTM2. As shown in Figure 4, if ht belongs to a
key clip, it is taken as viseme vector except for the first time
step. If ht belongs to a less-important clip, we conduct pool-
ing on its less-important clip together with the first frame of
the following adjacent key clip. We define the pooled feature
chunk as {ht} (t ∈ [t∗1, t

∗
Tc
]), where Tc is the sum of the time

step length of the less-important clip and 1. There are three
pooling strategies to weaken less-important clips as follows:

• Key pooling: The last step of the chunk is directly taken
as the input h′t = hkey for LSTM2. This pooling drop-
s less-important clip’s outputs, but keeps their gradually
recurrent characteristic.

• Mean pooling: The average vector of the chunk along
temporal dimension is taken as the input h′t . Here h′t =
hmean averages the effect of recurrent outputs of the
chunk.



• Max pooling: The maximization on the chunk along tem-
poral dimension is taken as the input h′t = hmax. Here
h′t highlights the prominent response of the chunk .
After pooling, we feed the recurrent output {h′t} (t ∈

[1, n′]) into the fixed-length n′′. If n′ < n′′, we fill with
zero-padding vectors. If the length of n′ ≥ n′′, we make
systematic sampling on {h′t} to match the fixed length n′′.

Attention-aware weighting Different from most of atten-
tion models describing the relevance of source positions (en-
coder’s hidden states {hso}) and target position (current de-
coder’s hidden state hta), our attention-aware mechanism
weights each source position to the entire translated sentence
({hta}). It means that our attention balances the intrinsic re-
lationship among source positions. It is depicted in Figure 5,
which weights each source position’s impact along time di-
mension. The matrix W ∈ RTe is automatically learned by
training h̃t = wt · h′t in our end-to-end architecture, where
h′t is one kind of above three pooling outputs and Te = n′′.
We will make evaluation with and without this module, de-
noted as HLSTM-attn and HLSTM, respectively.

Sentence Generation
Turning to the decoding stage, LSTM2 and LSTM3 are
still kept for sentence generation. The motivation is to rep-
resent visual content and word at respective layer. Here
LSTM3 runs recursively to output word sequences with
varying lengths. Given the representation V of the encod-
ing stage, the decoder estimates the conditional probability
of the output sequence (y1, · · · , ym):

p(y1, · · · , ym|V ) =

m∏
t=1

p(yt|vn′′+t−1, yt−1) (4)

In the decoding stage, LSTM2 feeds zero-padding vec-
tors as empty visual inputs and LSTM3 starts with the be-
ginning tag (<BOS>) and sequentially feeds the word em-
bedding vectors. During training, LSTM3 inputs the em-
bedding vector of previous ground truth word at each step.
At test time, the output (zt) of LSTM3 is used to predic-
t current word (yt) with the maximum probability after the
softmax function as shown in Equation 5. We select word
(yt) with the maximum probability in vocabulary and feed
its word embedding vector into next time step.

p(yt|zt) =
exp(Wyzt)∑

z′t=V

exp(Wyz′t) (5)

In this paper, we use the entropy of generated sentence to
learn the model parameter ψ. The loss optimization is only
implemented during decoding stage while training. It maxi-
mizes the entropy by the log-likelihood of the predicted sen-
tences of the entire training dataset using stochastic gradient
descent. While this loss is propagated back in time, the mod-
el parameter ψ is updated, which is formulated as:

ψ∗=argmax
ψ

m∑
t=1

p(yt|vn′′+t−1, yt−1;ψ)log p(yt|vn′′+t−1, yt−1;ψ)

(6)

Table 2: Two splitting strategies for the dataset
Signers Sentences Samples

Split I Train 40 100 40× 100 = 4000
Test 10 100 10× 100 = 1000

Split II Train 50 94 50× 94 = 4700
Test 50 6 50× 6 = 300

Table 3: Comparison on different models using Split I
Model Precision
LSTM&CTC (Warp-ctc)] 0.858
S2VT (Venugopalan et al. 2015) 0.897
LSTM-E (Pan et al. 2016) 0.882
LSTM-Attention (Yao et al. 2015) 0.851
LSTM-global-Attention (Luong,
Pham, and Manning 2015)

0.858

HLSTM(SYS sampling) 0.910
HLSTM 0.924
HLSTM-atten 0.929
Model WER
LSTM+CTC 0.119
HLSTM 0.107
HLSTM-atten 0.102

Experiment
Experiment Setup
Dataset: Our dataset is a collection of videos covering 100
daily sentences in Chinese sign language (CSL)1. Each sen-
tence is played by 50 signers. It contains 50*100=5000
videos. The vocabulary size is 179. Each sentence contains
4∼8 (average 5) sign words (phases).

To validate our method, we split the dataset by two strate-
gies shown in Table 2. (a) Split I - signer independent test:
It splits video samples of 40 signers as training set and that
of the remaining 10 signers as test set. The sentences of
training and test sets are the same, but the signers are dif-
ferent. (b) Split II - unseen sentences test: This strategy e-
laborately selects up to 6 sentences as test set, and the left 94
sentences as training set. The split meets the constraint that
words in the 6 sentences have separately appeared in the re-
maining 94 sentences, but each words’s context, occurrence
order and application scenarios are completely different.

Evaluation Metrics: We evaluate by the strict metric pre-
cision, namely the ratio of correct sentences. When generat-
ed sentence and the reference are completely the same, the
generated sentence is deemed correct. In addition, we calcu-
late the ratio of correct words to reference words in a sen-
tence and denote the mean ratio as Acc-w. Word error rate
(WER) (Cui, Liu, and Zhang 2017) is used which measures
the least number of operations to change translated sentence
into the reference. We also adopt semantics evaluation met-
rics widely used in NLP, NMT, and image Description Eval-
uation, i.e., BLEU, METEOR, ROUGE-L and CIDEr.

1http://mccipc.ustc.edu.cn/mediawiki/index.php/SLR Dataset



Table 4: Feature comparison on Split I under nhid = 256
Model Feature Precision

S2VT VGG 0.196
C3D 0.849

S2VT (3-layer) VGG 0.398
C3D 0.850

HLSTM VGG 0.446
C3D 0.852

Table 5: Precision comparison on different hidden-dims of
LSTM under C3D features (n′′ = 21, Split I)

nhid = 256 nhid = 512 nhid = 1000
S2VT 0.849 0.870 0.897

HLSTM 0.852 0.879 0.924

Comparison to Other Approaches
We compare HLSTM with the LSTM&CTC model2, which
is widely used in sequential data analysis such as speech
recognition and sign language recognition. To be fair, we
adopt the same features extracted by the pre-trained C3D
and feed them into LSTM&CTC in our experiments. Mean-
while, as our work also belongs to the encoder-decoder
paradigm, we compare HLSTM to some existing similar
models. S2VT is a standard 2-layer stacked LSTM archi-
tecture with fixed encoder length (Venugopalan et al. 2015).
LSTM-E inputs deep 2D or 3D CNN features with mean
pooling for visual sematic embedding (Pan et al. 2016).
LSTM-Attention embeds an attention mechanism to cap-
ture the temporal relationship among frames (Yao et al.
2015). LSTM-global-Attention explores a global attention
mechanism for NMT (Luong, Pham, and Manning 2015).
Besides, in the following experiments, if not specified, our
HLSTM merely uses C3D features without temproal atten-
tion. HLSTM chooses mean pooling for Split I and max
pooling for Spilt II. The reason is given in model valida-
tion. As for extension, HLSTM (SYS sampling) removes
key clip selection and directly feeds the recurrent outputs of
LSTM1 into LSTM2 by systematic sampling in HLSTM,
and HLSTM-attn adds temporal attention to HLSTM.

As shown in Table 3, compared to LSTM&CTC, our
model achieves better performance with higher precision
and less WER. The LSTM&CTC framework aims at word-
level alignment, which does not well learn word semantics.
Compared to similar encoder-decoder frameworks, there are
four aspects conclusions: (1) Compared to S2VT with the
fixed-length stacked architecture, our hierarchical architec-
ture achieves better performance. (2) LSTM-E implements
average pooling on whole features, while our model pools on
subunit chunk (less-important volumes). Experimental re-
sult indicates our pooling approach has better performance.
(3) Classic attention mechanism which focuses on the rele-
vance of source positions and current target position, does
not work well on our datatset, such as LSTM-Attention and
LSTM-global-Attention. These attentions repeatedly update

2https://github.com/baidu-research/warp-ctc

Table 6: Comparison on different pooling strategies
Pooling strategy Precision on Split I Acc-w on Split II

Key pooling 0.920 0.479
Mean pooling 0.924 0.458
Max pooling 0.912 0.482

Table 7: Comparison on different encoder frameworks
Model Precision

S2VT (n = 21) 0.897
S2VT (n = 66) 0.850

S2VT (3-layer, n = 21) 0.903
S2VT (3-layer, n = 66) 0.854

HLSTM (SYS sampling) 0.910
HLSTM 0.924

HLSTM-attn 0.929

each weight of source positions at each time, and spread the
global influence to current target position. Differently, our
attention strategy emphasizes accumulative weighting tran-
sition along the time dimension. It just remains transitive
influence of source position until current position. For the
SLT problem, the latter is much more feasible. (4) At last,
among our HLSTMs, HLSTM (SYS sampling) is the worst,
HLSTM is better while HLSTM-attn achieves the best per-
formance, which can be attributed to the key clip selection
and temporal attention-aware weighting.

Model Validation
As S2VT achieves the closest performance to our HLSTMs,
we extend it to the S2VT(3-layer) and further compare in
subsequent model validation experiments. S2VT(3-layer)’s
encoder is set to 3-layer stacked LSTM with equal length.

Experiment on 2D and 3D CNN features: To compare
2D and 3D CNN features, we employ VGG and C3D mod-
els. VGG extracts features from each frame (Simonyan and
Zisserman 2015). C3D extracts features from each video
chunk clipped by every 16-frame with 8-frame overlap be-
tween two adjacent chunks (Tran et al. 2015). Therefore, the
number of VGG features is 8 times of C3D. Limited by the
high dimension (4096-dim) and a large number of VGG fea-
tures, we experiment with the dimension of LSTM’s hidden
states nhid = 256 to make calculation not out of memo-
ry. Table 4 shows that the C3D feature is obviously better
than the VGG feature by either original S2VT, the extended
3-layer S2VT or HLSTM. C3D still has the advantage of ac-
tion capturing for SLT. With the compact C3D features, the
defect of gradient disappearance for long sequence learning
is not serious. Thus the C3D model is taken as feature ex-
tractor in subsequent experiments.

Experiment on different LSTM hidden state number-
s: To test the precision with different LSTM unit settings,
we set nhid to 256, 512 and 1000, respectively. As shown in
Table 5, when the nhid is set larger, the precision is raised.
What’s more, by our observation, when nhid is small, ex-
perimental results are instable under multiple random tests.



Table 8: Evaluation under Split I for seen sentence recognition
Precision CIDEr BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE-L METEOR

LSTM&CTC 0.858 8.632 0.899 0.907 0.918 0.936 0.940 0.646
S2VT 0.897 8.512 0.874 0.879 0.886 0.902 0.904 0.642

S2VT(3-layer) 0.903 8.592 0.884 0.889 0.896 0.911 0.911 0.648
HLSTM (SYS sampling) 0.910 8.907 0.911 0.916 0.922 0.935 0.938 0.683

HLSTM 0.924 9.019 0.922 0.927 0.932 0.942 0.944 0.699
HLSTM-attn 0.929 9.084 0.928 0.933 0.938 0.948 0.951 0.703

Table 9: Evaluation under Split II for unseen sentence translation
Acc-w CIDEr BLEU-3 BLEU-2 BLEU-1 ROUGE-L METEOR WER

LSTM&CTC 0.332 0.241 0.039 0.124 0.343 0.362 0.111 0.757
S2VT 0.457 0.479 0.135 0.258 0.466 0.461 0.189 0.670

S2VT(3-layer) 0.461 0.477 0.145 0.265 0.475 0.465 0.186 0.652
HLSTM (SYS sampling) 0.459 0.476 0.185 0.293 0.463 0.462 0.173 0.630

HLSTM 0.482 0.561 0.195 0.315 0.487 0.481 0.193 0.662
HLSTM-attn 0.506 0.605 0.207 0.330 0.508 0.503 0.205 0.641

However, when nhid = 1000, the results are stable. Thus we
select the nhid = 1000 as our LSTM parameter setting.

Experiment on different pooling strategies: From Ta-
ble 6, the result accords with properties of these pooling
strategies. To weaken less-important clip, along temporal
dimension, key pooling keeps its recurrent characteristics,
mean pooling averages its recurrent outputs, while maximal
pooling highlights its prominent response. Therefore, mean
pooling is the best to remember the average response of seen
sentences. As for unseen sentence, max pooling is the best
to retain maximum response of discriminative gestures of
distinct sign words. Thus we separately set mean and max
pooling for Split I and II. It is notable that key pooling makes
some compromise with mediate performance.

Experiment on different n′′ settings: Under our dataset,
66 is the maximum length of C3D features of a video under
all training samples, and 21 is the mean length. Note that N ,
n and n′ are variable lengths for different videos. Therefore,
just n′′ needs to be discussed. If n′′ = 66, it recurrently
induces all sequential features; and if n′′ is set to 21, it means
compacting features to feed into mean length. As shown in
Table 7, better results are obtained with n′′ = 21 than with
n′′ = 66. When n′′ = 66, it makes little gain to supplement
useless padding vectors on LSTM2 and LSTM3 layers. In
other words, compact vector representation helps to achieve
better performance.

Experiment on different encoder frameworks: As
shown in Table 7, there are five similar but different encod-
ing frameworks. We see that a fixed length of encoder is not
a good choice, such as original S2VT and S2VT (3-layer).
The hierarchical recurrent encoder works well. Bedsides, 3-
layer is better than 2-layer as it incorporates recurrent char-
acteristic by the top LSTM. At last, among HLSTMs, sys-
tematic sampling is worse than variable-length key clip min-
ing. With temporal attention, HLSTM-attn achieves the best
performance.

Summary of experiments on seen sentences: Table 8
concludes evaluation comparison. The performances of pre-

cision and semantic metrics are consistent. These results ver-
ify the strong capability of the HLSTM models on seen sen-
tence under signer-independence test again.

Extended Experiment on Unseen Sentences

Generally, it is much more difficult for SLT on unseen sen-
tences than on seen sentences. In the evaluation dataset,
words in the 6 testing sentences have dispersedly appeared
in the 94 sentences under totally different semantics contex-
t, occurrence order and application scenarios. Meanwhile,
distribution of word samples in videos is extremely imbal-
anced. Even so, as shown in Table 9, HLSTMs still excels at
recognizing more meaningful words than others.

Conclusions

We have proposed a hierarchical-LSTM framework for
sign language translation, which builds a high-level visual-
semantic embedding model for SLT. It explores visemes via
online variable-length key clip mining and attention-aware
weighting. The experiments show that our model achieves
promising performance, especially under the independent
tests for seen sentences with discriminative capability. But
unseen sentence translation is still a challenging problem
with limited sentence data (e.g., unbalance data distribution
of common words and obscure words ) and unsolved out-of-
order word alignment. In next work we will make effort to
explore adaptable word alignment for translation.
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