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Abstract

Online sign interpretation suffers from challenges
presented by hybrid semantics learning among se-
quential variations of visual representations, sign
linguistics, and textual grammars. This paper pro-
poses a Connectionist Temporal Modeling (CTM)
network for sentence translation and sign label-
ing. To acquire short-term temporal correlations,
a Temporal Convolution Pyramid (TCP) mod-
ule is performed on 2D CNN features to realize
(2D+1D)=pseudo 3D’ CNN features. CTM aligns
the pseudo 3D’ with the original 3D CNN clip fea-
tures and fuses them. Next, we implement a con-
nectionist decoding scheme for long-term sequen-
tial learning. Here, we embed dynamic program-
ming into the decoding scheme, which learns tem-
poral mapping among features, sign labels, and
the generated sentence directly. The solution us-
ing dynamic programming to sign labeling is con-
sidered as pseudo labels. Finally, we utilize the
pseudo supervision cues in an end-to-end frame-
work. A joint objective function is designed to
measure feature correlation, entropy regulariza-
tion on sign labeling, and probability maximization
on sentence decoding. The experimental results
using the RWTH-PHOENIX-Weather and USTC-
CSL datasets demonstrate the effectiveness of the
proposed approach.

1 Introduction

This paper addresses problems associated with sign video in-
terpretation, which is related to topics in the computer vi-
sion and machine learning fields, i.e., gesture recognition
[Joshi et al., 2017], action detection and location [Nguyen
et al., 2018], human behavior analysis [Kacem et al., 2018],
and video understanding [Jelodar et al., 2018]. Vision-based
sign interpretation originates from isolated sign recognition
[Wu et al., 2016]; however, researchers are paying more
and more attention to continuous Sign Language Translation
(SLT) [Koller et al., 2016a; Cui et al., 2017]. Essentially,
SLT aims to bridge the semantic gap between vision and lan-
guage under complicated sign linguistics. Thus, we consider
the SLT task, with a particular focus on online SLT.
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SLT is challenging due to the following. (1) Visual hints
under sign linguistics are latent and obscure, i.e., facial
expressions, lip languages, flexible signs of locality, and
even some specific adjectives and adverbs. For example,
the adverb “fast” is represented by increasing the speed of
signing[Neverova et al., 2016]. (2) SLT involves additional
challenges related to hybrid semantics learning under vision
understanding, sign recognition, and natural language transla-
tion. How to jointly learn an excellent visual representation,
encode complicated sign linguistics, and decode grammati-
cal sentences in a unified model framework remains a diffi-
cult problem to solve [Graves et al., 2006]. (3) Sign videos
have sentence-level annotations, rather than the exact tem-
poral location of each sign action. It is a weakly-supervised
sequence-to-sequence problem [Pu et al., 2018]. (4) Accurate
online video translation is also difficult. Some previous stud-
ies first encode the entire video and decode textual seman-
tics, e.g., for video captioning [Venugopalan et al., 2015]. To
improve the translation performance, offline algorithms have
been used to fine-tune the model parameters [Koller et al.,
2016a; Cui et al., 2017]. Our objective is end-to-end training
for online translation with no additional supervision.

In this paper, we propose a joint model for online transla-
tion and sign labeling, which we refer to as a Connectionist
Temporal Modeling (CTM) network. As shown in Figure 1,
the pre-trained deep models ResNet-18 [He er al., 2016] and
ResNet-3D [Hara et al., 2017] are used to extract 2D and 3D
CNN features, respectively. Here a 3D CNN learns the spa-
tiotemporal hints in the short-term clips, while 2D CNN fea-
tures remain visual details at the frame-level. To align and
fuse these features under different granularities, a Temporal
Convolution Pyramid (TCP) module is designed to compress
the 2D features by convoluting several adjacent features. As
shown in Figure 2, there are three-stage convolutional opera-
tions, and each temporal convolution span involves two non-
overlapping time steps in the TCP. Thus, the long frame-level
2D features (eight time steps) are transformed into a compact
clip-level 3D feature (one time step). In fact, the TCP is a
“pseudo” 3D feature extraction operation, i.e., 2D spatial +1D
temporal convolutional operations. Finally, we adopt Multi-
Layer Perceptron (MLP) to fuse pseudo 3D and original 3D
features.

Next, three modules in the CTM framework, i.e., Con-
nectionist Temporal TRanslation (CTTR), Feature CLaSsi-
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Figure 1: Overview of the proposed CTM framework for online SLT. Given a video, we extract 2D frame-level and 3D clip-level feature
streams using the pre-trained models ResNet-18 and ResNet-3D, respectively. The TCP module is conducted on the 2D features to learn
short-term temporal clues, and align them to the 3D features. The detailed implementation of TCP is shown in Figure 2. Then, the fused
features are fed into three modules for long-term sequential learning, as shown in Figure 3. Finally, we utilize pseudo supervision cues in
the online deep model. A joint loss optimization combining Lfcor, Lettr, and Lycrs, is designed to measure feature correlation, sentence

decoding, and entropy regularization on sign labeling.

fication (FCLS), and Feature CORrelation (FCOR), receive
aforementioned fused features for long-term sequential learn-
ing. As shown in Figure 3, the first CTTR module performs
sentence translation, while the FCLS and FCOR modules
measure sign labelling at the word-level. In particular, the
CTTR module provides a translated sentence with the max-
imum probability under multiple decomposed paths of sign
word labeling. It addresses the task in a weakly-supervised
learning manner. Since videos are annotated at the sentence-
level, CTTR is the primary contributive module in the long-
term sequential learning.

To further address the challenges associated with weakly
supervision learning, we integrate the pseudo-supervised
learning into the deep CTM model. In our solution, L i,
Lyers, and Ly.or involve the objective functions of above
three deep modules, respectively. Using L., we calculate a
sign labeling path with maximum probability corresponding
to the sentence label and consider it as sequential sign labels
of features, i.e., pseudo labels. Based on the pseudo labels,
L 1 measures the entropy regularization on feature classifi-
cation, and L s is a triple loss relative to feature correlation.
L fcor models the feature similarity under the same sign class
or different sign classes, i.e., similarity difference among pos-
itive or negative feature samples. Finally, Ly, L fers, and
L fcor are combined as the objective function of the overall
framework. By minimizing the joint loss, the model is pushed
to learn more temporal cues. The primary contributions of
this study can be summarized as follows:

e Learning a good clip representation facilitates the ac-
quisition of the short-term temporal correlation. The
TCP is conducted on 2D CNN features to realize
(2D+1D)=pseudo 3D’ CNN. We align the 3D’ features
with the original 3D features and fuse them.

e We propose a connectionist decoding scheme for long-
term sequential learning, where the decoder embeds
the dynamic programming optimization into end-to-end
deep learning. It learns the connectionist mapping
among features, sign words, and the generated sentence.

Pseudo supervision cues are utilized for online learning.
We design a joint objective function to measure sentence
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translation, feature correlation, and entropy regulariza-
tion based on pseudo labels, where pseudo labels denote
the sign word labels obtained from previous connection-
ist decoding.

2 Related Work
2.1 Sequence-to-sequence Learning

Learning temporal cues in videos is very important. In this
paper, we do not discuss traditional temporal models, such as
Dynamic Time Warping (DTW) [Lin er al., 2014] and Hid-
den Markov Models (HMM) [Guo et al., 20171, in detail. For
SLT, both DTW and HMM require significant training time.
DTW implements template matching on the entire dataset and
HMM represents the transformation among a large number
of latent states. With the rapid development of deep learn-
ing, various RNN deformations have become more prevalent
and effective in sequential learning. Liu et al. proposed an
LSTM-based end-to-end neural network that was effective for
isolated sign recognition [Liu et al., 2016]. Given the ability
of CNNs to extract features and RNNs to perform sequential
learning, many hybrid models were emerged, i.e., temporal
convolution and bidirectional RNNs [Pigou er al., 2018], Re-
current 3D CNNs [Lefebvre et al., 2015], and depth DNN
embedded with HMM [Wu et al., 2016]. These hybrid meth-
ods can model the spatiotemporal variations simultaneously.
Note that we also exploit the merits of CNNs and RNNs in
our proposed model.

2.2 Weakly-supervised Learning in Videos

As SLT is a typical weakly-supervised task, some researchers
have focused on action location and word alignment. To ad-
dress word alignment, Koller et al. embedded a deep CNN
into the hybrid HMM framework [Koller et al., 2017]. Cui
et al. proposed an LSTM and Connectionist Temporal Clas-
sification (CTC) framework to address gloss-level classifi-
cation [Cui et al., 2017]. In contrast, the encoder-decoder
framework, which is widely used in neural machine transla-
tion and video captioning, is prevalent for weakly-supervised
sequential learning. Guo et al. proposed an encoder-decoder
framework with variable-length clip mining for a Chinese
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sign language translation [Guo er al, 2018]. A similar
study [Cihan Camgoz et al., 2018] proposed an attention-
based encoder-decoder network comprising two specialized
RNN modules. However, these proposed methods decoded
word by word after encoding all visual content. They do
not apply to online SLT. Online sequential action recogni-
tion [Liu er al., 2018] is closely related to our study. How-
ever, the task assumed strict supervision cues, i.e., exact start
and end time labels for each action. Our task differs in that it
involves sentence-level labels without exact temporal cues at
the word-level. Compared to the problem that Liu et al. [Liu
et al., 2018] addressed, online SLT has fewer temporal cues.

In order to enhance temporal cues, some studies have
adopted multiple iterations of the EM algorithm to perform
offline fine-tuning. Koller et al. trained a frame-level classi-
fier on extra sign language dataset by embedding a CNN in an
iterative EM algorithm [Koller ef al., 2016al. In [Koller et al.,
2016b], the proposed model embedded a CNN into a HMM,
which feeds the output of the CNN to a Bayesian model in the
HMM for continuous SLT. Cui et al. designed a three-stage
optimization process, i.e., feature extraction, word alignment,
and sequence learning [Cui ef al., 2017]. In [Pu et al., 2018],
authors alternately optimized the feature extractor and the se-
quence learning model using dilated convolution operations.
Differing from these offline iterations, the proposed model
introduces pseudo supervision cues into an end-to-end frame-
work for online sequential learning.

3 Proposed Method

The general framework of our model is shown in Figure 1.

GivenavideoV = {U,,,}f:/:l, two feature streams, i.e., frame-
level features foq = (f1,- -, fa) and clip-level features
faa = (clipy,-- -, clipy), are extracted, and then a sequence
of gloss labels Y = (y1,- -+ , ym) is output. We discuss each

module in detail in the following.

3.1 Clip Feature Learning in Videos

Sequential learning always suffers gradient attenuation along
temporal transitions. Learning a good clip representation is to
acquire the compact short-term temporal correlation. In this
section, we discuss the extraction of 2D and 3D CNN fea-
tures, the alignment of 2D and 3D, and feature fusion. The
advantage of this clip representation is that both 3D and tem-
poral 2D CNNss are leveraged to learn discriminant features.

TCP on 2D Features

Motivated by the At-gram language model used in natu-
ral language processing tasks, in the Temporal Convolution
Pyramid (TCP) module, each layer (temporal convolution
layer; TCOV) implements the embedding of n-item adjacent
features. It calculates local convolution in the short-term tem-
poral view. In other words, the TCP is a pseudo 3D feature
learning operation, i.e., the combing 2D spatial and 1D tem-
poral convolutions.

Given the original 2D frame features { foq} € R%*VN an
I-layer TCP transforms them to pseudo clip features { f3,} €
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Figure 2: Temporal Convolution Pyramid (TCP) on 2D features.

N
N
R =G | The TCP calculation is expressed as follows:

(sl =rC0V { - [TCOVa, (L0 | )

where ®; indicates the parameter of the i-layer TCOV; in the
TCP, and ®; =(ch;, d;, /\t;, s;, pad;) denotes the format of a
convolutional parameter (number of channels, height, width,
stride, and padding). d; x At; denotes the convolutional ker-
nel size, and s; is the sliding window along the temporal di-
mension. Here, d; 11 = ch;, i.e., the kernel size for the (i+1)-
th layer is set to the output dimension of the ¢-th layer.

As shown in Figure 2, there is a three-layer TCP with
(At; = 2)-gram and non-overlapping (s; = 2). Thus, the
frame-level 2D features (eight time steps) are transformed
into a short clip-level 3D feature (one time step). The TCP
gradually condenses temporal cues via contiguous At-items.

2D & 3D Feature Alignment and Fusion

Give the temporal dimension of the original 3D features, a
compact pseudo 3D feature is obtained using the TCP; thus,
the model can align pseudo 3D feature f’;, to the original
3D features f;,, and fuse them. Here, the entire clip repre-
sentation enforces feature fusion [(2D+1D ~ 3D’)+3D]. The
fusion scheme using the MLP is formulated as follows:

N
Fpus ={fn}ny = MLP(f34® f34) 2)
where & represents the concatenation operation on vectors.

3.2 Connectionist Temporal Translation

After feature fusion, we tackle long-term sequential learn-
ing. This subsection elaborates on the Connectionist Tempo-
ral TRanslation (CTTR) module in Figure 3. The other two
modules are introduced in Section 3.3.

Temporal Encoding

The BGRU excels at modeling forward and backward con-
texts; thus, it is robust and effective for sequential action
recognition. We employ the BGRU, expressed as follows,
as the basic encoding RNN unit.

H={hn}r_ ={BGRU (fn)}_, 3)

Then, based on the output of BGRU, we employ a fully-
connected layer F'C' to embed the output into non-normalized
categorical probabilities with K sign classes as follows:

P={pu}r_)=Psoftmas [FC({hn}g—ﬁ]

where Q.o ftmaz 18 the softmax function, P is the probability
score matric, p,, € R¥ is the categorical probability vector of
the n-th clip, and K equals the vocabulary size plus 1 (a new
introduced blank symbol ‘).

4)
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Figure 3: Architecture of the proposed approach for online SLT. The
middle CTTR module decodes the connectionist mapping among
features, words, and the generated sentence. Pseudo supervision cue
7 is utilized on both two side modules (FCLS and FCOR).

Decoding Optimization

Let word alignment 7 be a sequence of words including or-
dinary words and the blank symbol ‘_, i.e., 7 = {ﬂ'n}n I
where m,, denotes the n-th word of 7. The probability of  is
given by the product of probabilities as follows:

T

where p7 denotes the probability of word 7, at time step n.

Motivated by dynamic programming optimization [Graves
et al., 20061, we define a two-stage greedy strategy on a long
word label sequence. It outputs a short sentence by removing
the blank label in the first stage and deletes continuous repeti-
tions in the second stage. Note that a target sequence ) may
correspond to multiple different alignments {7}; thus, the
CTTR module defines a many-to-one mapping as B, which
removes all blanks and repeated labels from the alignments.
As shwon in Figure 3, 5 implements the transformation be-
tween sign labeling and sentence translation. Therefore, in
the training process, the CTTR decoder objective function is
defined as follows:

P =Prob(m (®)]

N
L= Y, —logP"™=— " Y "pin  (6)
T=B-1() r=B-1(Y) n=1
where B! (Y)={r | B(7) =Y} is the set of all alignments.

In the testing stage, we output the word alignment using the
: . . N

maximum function on score matrix P = {p,, },,_, and trans-

form it to a sentence Y ={y, } -,

3.3 Joint Loss Optimization

To further enhance the temporal cues in videos, we intro-
duce the concept of pseudo-supervision. Note that pseudo
labels denote the sign labeling path = {wn}g 1 with the
maximum product of probabilities P, .. (Section 3.2). Here,
m={m1, -, 7} is taken as the available pseudo word labels
of the sequential features. Based on these labels, the FCLS
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module evaluates the feature classification entropy. In addi-
tion, the FCOR module measures the inter- and intra- simi-
larities of different feature groups under K sign classes. Both
modules contribute to inhibit overfitting of the CTTR module.

Here, based on training set S (all video samples and anno-
tations), we create set M of clip-level fused features and set
T of all pseudo triplets in all training epochs. The objective
function of the entire training framework is given as follows:

1 1 1
L= E Zﬁcttr + W Zﬂfcls + m Z‘Cfcor (N

where L., is already given in formula (6), while £y and
L ¢cor are expressed in following formulae 8 and 11.

Cross-entropy Loss

Based on fused features { f,,} obtained in subsection 3.1, we
realize the FCLS module via Fully Connected layer (FC),
Batch Normalization (BN), and softmax operations to obtain
predicted probabilities at each clip-level time step. Here, we
define m as a feature sample in M and 7y, is its pseudo la-
bel. If the sequential features are reliable, the new predicted
probability of m is close to its pseudo label 7,,,. Note that we
adopt cross entropy loss to measure the predicted probabili-
ties and pseudo labels as follows:

> yhlog(ph,)

meM keK

Licis(M) = — (8)

where y* obtained by the CTTR module indicates whether
sample m belongs to class m,, (value of 1 or 0), and pfl'1 is the
new predicted probability calculated by the FCLS module.

Triplet Loss

The triplet loss is designed to ensure that features with the
same label have close embeddings together, while features
with different labels are distant in the embedding space. We
adopt the FC and BN operations in the FCOR module to
model the new feature embeddings of { f,,}.

Based on the sign labeling path 7 with the maximum prod-
uct of probabilities P .. we split these embedding fea-
tures into different groups. In summary, features are divided
into positive pairs with the same word label; otherwise, fea-
tures are divided into the negative pairs. We denote it as set
T = {(e+,e+),(ex,e_),(e—,ey)}. For the video example
shown in Figure 4, e; and eg are (e, e ), while e; and ey

e (ex,e_)/(e—,ey). In the correlation matrix, the colored
squares indicate positive pairs, and the gray squares indicate
negative pairs. Here, squares with snowflake points represent
pairs containing a blank label ‘> with no word meaning. Note
that we do not consider self-pairs along the diagonal line and
squares with snowflake points (blank label ‘_’) in the matrix.

The distance measurement for positive and negative feature
pairs must satisfy the following constraint:

S(€+,e+) > S(eJrae*) t+a
(€+,€+) > 8(6_764_) +a

s(a,b) = HaHHbH = Ly(a)" - Ly(b)

where s(a,b) is similarity score between features a and b,
Lo represents Lo-normalization, and parameter v controls

9
s.t.
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Figure 4: Triplet loss calculation based on different classification
groups for feature correlation. e3 indicates a blank symbol ‘_’. In the
matrix, we do not consider diagonals and squares with snowflakes,
where self-correlation and the blank label ‘.’ have no word meaning.

similarity intensity during training. Here, we seek similar-
ity scores for positive pairs that are greater than both negative
pairs and the margin a.

Thus, we set triplet loss Lf.or to calculate all triplets
{(e4,e+),(e+,e—),(e—,e4)} in dataset 7. The similar-
ity measurement s(a, b) by Lo-normalization is symmetrical;
thus, normal triplet loss is formalized as follows:

Lii(T) = Z maz(s(tneg) — $(tpos)+ v, 0)
teT

(10)

where (e4,e_) = (e—,ey) is denoted tyeq, and (e4, e ) is
denoted t,,5 in 7.

As shown in Figure 4, positive pairs in a video are much
less than negative pairs, no more than in the whole dataset.
Thus, we adjust the calculation of triplet loss. For each train-
ing batch, we randomly sample the same number of negative
pairs as positive pairs in formula (10). Then, we evaluate
positive pairs individually; the same evaluation is performed
for negative pairs. Finally, we adopt the triplet 10sS L ¢cor as
follows:

Licor(T)="Y_ maz(s(tneg) —5(tpos) +a, 0)

teT
= Zmam(s(tneg) -8, O)Jerax(ﬁ*S(tpos), 0)
teT teT

an

where (3 controls similarity intensity during training.

4 Experiment

4.1 Dataset and Evaluation

We experiment on two benchmarks, i.e., RWTH-PHOENIX-
Weather [Koller et al., 2015] and USTC-CSL [Huang et al.,
2018]. The PHOENIX dataset includes 6841 Germany sign
videos played by nine signers. The dataset is split into three
independent parts, i.e., “TRAIN”, “VAL” and “TEST”. The
CSL dataset includes 5000 Chinese sign videos annotated by
50 signers. Under the “Split II”” constraint [Guo er al., 2018],
it selects video samples of 94 sentences for training. The re-
maining unseen six sentences are used for testing.

To evaluate performance, Word Error Rate (WER) [Koller
et al., 2016a] measures the minimum number of insertion,
replacement and deletion operations converting generated se-
quence L' to ground truth L. Here, ins and del denotes the
proportions of insertion and deletion operations divided by
length |L|, respectively.
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input size | Layer Kernel, channel, stride output size
TCOV1 2 x do7 dl, 2 (t/?) X d1

t X dy TCOV, 2 x dy, do, 2 (t/4) x do
TCOVg 2 % d27 dg, 2 (t/B) X d3

Table 1: Parameter setting of the TCP module on 2D CNN features.

Features VAL(%) TEST(%)
del /ins/ WER  del/ins / WER
Saa 55.1/1.5/694 53.6/1.8/68.3
fia 275/5.8/63.6 26.8/6.1/62.2
S3a 21.0/5.1/45.1 20.0/55/45.4
fiq+ faa 10.5/7.3/422 10.8/7.8/42.2

Fusiongy  r,,3 106/69/41.0 10.1/7.9/41.3

Table 2: Performance comparison on PHOENIX dataset using dif-
ferent features with the L4 loss.

4.2 Implementation

Videos in the RWTH-PHOENIX-Weather dataset are under
pixels 210x 260, which covers the human body. In the USTC-
CSL dataset, each frame has 1280 x 720 pixels, which con-
tains significant amounts of redundant blank background. We
segment a local region with 210 x 260 pixels to cover the en-
tire human body. Then, all images in both two datasets are re-
sized to 224 x 224 pixels, and we combine the adjacent eight
frames with a clip of four frames of overlap for ResNet-3D.
We feed the same data as the ResNet-18 input.

We adopt the ADAM optimizer and set the batch size to 40
and initial learning rate of the overall network to 1 x 10~%.
Here, the learning rate is gradually reduced by 1/10 ev-
ery 20 epochs. As shown in Table 1. We set parameters
do=d1=ds=d3=512-dim in the TCP. Note that each d; can dif-
fer. We also use ReLU and Dropout operations after each
TCOV layer in the TCP to avoid over-fitting. We set the
Dropout parameter to 0.2. Moreover, the initial learning rate
of the TCP is 5 x 1074, 8 = 0.5 was found to provide the
best experimental performance.

4.3 Model Validation

We test different features to reflect the impacts of the TCP and
feature fusion modules. As shown in Table 2, the del rate of
f2q reaches 55.1%, which is far worse than other features. It
indicates that as faq becomes overly long, it generates many
redundant incoherent word labels along the temporal dimen-
sion. By introducing the TCP on faq4, the del rate signifi-
cantly improves the effectiveness by dropping approximately
50% of the words. Directly adding faq' and faq improves
performance; however, the improvement is insufficient. By
implementing MLP fusion on fs4’ and f34, the WER of the
fused features is reduced from 42.2% to 41.0% and 42.2% to
41.3% on the VAL and TEST sets, respectively.

We verify the joint loss optimization, i.e., the effective-
ness of pseudo-supervision optimization. The CTM frame-
work primarily conducts end-to-end weakly supervised learn-
ing with L. By introducing Ly, the performance on
both the VAL and TEST sets are improved by 1.1% (Table 4).
With the auxiliary of L.,,, the model learns the similarities
and differences among clip-level features, which further re-
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Methods Off-line Modality VAL(%) TEST(%)
Iterations | hand traj face | des/ins WER | des/ins WER
HOG-3D [Koller et al., 2015] - v 25.8/42 609 | 232/41 58.1
CMLLR [Koller et al., 2015] - Vv Vv v | 21.8/39 550 |203/45 530
1-Mio-H [Koller er al., 2016al 3 Vv 19.1/41 51.6 | 17.5/45 50.2
1-Mio-H+CMLLR [Koller et al., 2016al 3 4 4 v 1163746 47.1 | 152/46 451
CNN-Hybrid [Koller et al., 2016b] 3 Vv 12.6/5.1 383 | 11.1/57 3838
Staged-Opt-init [Cui et al., 2017] - v 16.3/6.7 462 | 15.1/74 469
Staged-Opt [Cui er al., 2017] 3 Vv 13.7/73 394 | 122/75 387
SubUNets [Camgoz ef al., 2017] - V4 146/4.0 408 | 143/4.0 407
Dilated-CNN-init [Pu et al., 2018] - 185/2.6 603 | 18.1/28 59.7
Dilated-CNN [Pu et al., 2018] 83/48 38.0 | 7.6/48 373
Our Method 11.6/63 389 | 109/64 38.7

Table 3: Performance comparison with PHOENIX dataset. “Hand,” “traj,” and “face” indicate extra data-augmentation. “Off-line Iterations”
refers to the number of offline optimizations, and “-” represents an end-to-end learning framework with no offline iteration.

Loss VAL(%) TEST(%)
del/ins/ WER del/ins / WER
Leter 106/69/41.0 10.1/7.9/41.3
Lerir+Lgels 10.2/6.7/39.9 10.3/7.7/40.2
Lerir+L feor 11.3/6.7/39.8 10.9/6.9/40.0
Leypr+Lers+Licor 11.8/59/38.9 10.6/6.1/38.7

Table 4: Results on PHOENIX dataset using different loss functions.
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Figure 5: Example of decoding words using different module set-
tings. “S” and “D” denote substitution and deletion operations.

duces the WER value on the VAL and TEST sets by 1.0%
and 1.5%, respectively. When L.sr, Licis, and Lyeo, are
used simultaneously, the proposed approach achieves the best
results. A comparison of the obtained results relative to dif-
ferent module settings is shown in Figure 5.

4.4 Main Comparison

Here, we compare the proposed approach to the state of
the art methods. As shown in Table 3, there are two ob-
vious conclusions. (1) Extra visual hints are widely used
to improve performance in previous studies, such as intro-
ducing visual representations of human body parts (hand
and face) and pose trajectory. Moreover, IM-Hands [Koller
et al., 2016a] imported a pre-trained sign vocabulary, and
CNN-Hybrid [Koller et al., 2016b] utilized an initialized
word alignment. In contrast, the proposed model has no
additional initialization and extra input data. (2) Most ap-
proaches adopt additional offline optimizations, such as 1-
Mio-H, CNN-Hybrid, Staged-Opt [Cui et al., 2017], and
Dilated-CNN [Pu et al., 2018]. Without offline iterations,
the proposed CTM demonstrates much better performance
than HOG-3D [Koller et al., 2015], CMLLR [Koller et al.,
2015], SubUNets [Camgoz et al., 2017], Staged-Opt-init and
Dilated-CNN-init. Note that Staged-Opt and Dilated-CNN
show excellent performance with offline iterations. Their ini-
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Methods TEST WER(%)
S2VT [Venugopalan et al., 2015] 67.0
S2VT(3-layer) [Yao et al., 2015] 65.2
HLSTM [Guo et al., 2018] 66.2
HLSTM-attn [Guo et al., 2018] 64.1
Our Method 61.9

Table 5: Performance comparison on USTC-CSL dataset.

tial WER value reduce rapidly to 46.9% and 59.7% on the
TEST, and these values are much lower than those obtained
by the proposed CTM model. Note that besides time consum-
ing, offline iteration has another weakness, i.e., it is always
trained repeatedly using fixed datasets, which is not applica-
ble to dataset extension. The proposed CTM model does not
suffer this limitation, and still achieves comparable perfor-
mance without extra supervision and offline iterations.

In addition, as shown in Table 5, this proposed model also
achieves the best performance compared to other methods on
the USTC-CSL dataset. The proposed model demonstrates
the performance gains of 2.2~5.1%. More importantly, both
S2VT and HLSTM involves a encoding-decoding architec-
ture for sentence generation, and this architecture decodes
sentences after encoding the entire video. In contrast, the
proposed CTM model exploits online connectionist tempo-
ral encoding; thus, the proposed approach is more flexibility
relative to online SLT.

5 Conclusion

The paper proposes a temporal convolution pyramid mod-
ule to learn the short-term temporal correlation, and a con-
nectionist decoding scheme for long-term sequential learn-
ing. In addition, we design a joint objective function to opti-
mize online learning under pseudo supervision. The proposed
CTM model represents an end-to-end deep network for on-
line translation and sign labeling. The experimental results
demonstrate that the proposed approach achieves results that
comparable to state of the art methods.
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