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Abstract
Unsupervised image captioning with no annota-
tions is an emerging challenge in computer vision,
where the existing arts usually adopt GAN (Gener-
ative Adversarial Networks) models. In this paper,
we propose a novel memory-based network rather
than GAN, named Recurrent Relational Memory
Network (R2M ). Unlike complicated and sensi-
tive adversarial learning that non-ideally performs
for long sentence generation, R2M implements
a concepts-to-sentence memory translator through
two-stage memory mechanisms: fusion and recur-
rent memories, correlating the relational reasoning
between common visual concepts and the gener-
ated words for long periods. R2M encodes vi-
sual context through unsupervised training on im-
ages, while enabling the memory to learn from
irrelevant textual corpus via supervised fashion.
Our solution enjoys less learnable parameters and
higher computational efficiency than GAN-based
methods, which heavily bear parameter sensitivity.
We experimentally validate the superiority of R2M
than state-of-the-arts on all benchmark datasets.

1 Introduction
Traditional image captioning [Yao et al., 2019; Huang et al.,
2019] requires full supervision of image-caption pairs anno-
tated by humans. However, such full supervision is ridicu-
lously expensive to acquire in cross-modal datasets. Re-
cently, substantial researches tend to flexible constrained cap-
tion tasks, such as unpaired captioning [Gu et al., 2019;
Guo et al., 2019] and unsupervised captioning [Feng et al.,
2019] with weak or no supervised cues. It is challenging to
leverage the independent image set and sentence corpus to
train a reliable image captioning model; worse still, image
captions usually cover specified or insufficient topics, e.g., the
well-known benchmark MSCOCO images [Lin et al., 2014]

just cover 80 object categories, raising up the challenges to
generate rich semantical and grammatical sentences.

There are merely two unsupervised methods test on the
disjointed image and text corpus data. [Feng et al., 2019]

˚Corresponding authors.

Figure 1: The basic idea of our solution; that is to learn common
concepts co-occurred in both image set and text corpus. We propose
a light memory network named R2M to memorize and translate
concepts to a sentence. R2M first imitates humans to listen to ser-
val salient words and make sentences, exhibiting supervised learning
(SPL) on text corpus. Then it locates visual concepts in images and
makes sentences, representing unsupervised learning (UPL). The
proposed memory demonstrates effective semantic reasoning for se-
quential learning.

proposed an architecture comprising of an image encoder, a
sentence generator, a discriminator with adversarial loss and
concept reward. [Laina et al., 2019] learned a joint seman-
tic embedding space, where either images or sentences were
transformed. A discriminator was then designed to judge
where the embedding feature came from, image or sentence
domain. Both of them resolved the task with adversarial train-
ing, while obeying the usage of GAN (Generative Adversar-
ial Networks) in unsupervised mode [Lample et al., 2018;
Donahue and Simonyan, 2019; Yang et al., 2018]. As it is
widely known, current GAN methods based on ordinary re-
current models (e.g., LSTM) always employ RL heuristics
and are quite sensitive to parameter initializations and hyper-
parameter settings [Nie et al., 2019].

Orthogonal to above GAN-based models, in this paper, we
propose a novel memory-based solution, named Recurrent
Relational Memory Network (R2M ). The novelty of R2M
lies in its exploitation on visual concepts and describing im-
age via memory, serving as a concepts-to-sentence memory
translator to learn the textual knowledge from discrete com-
mon concepts in diverse sentences, meanwhile being capable
of making sentences with correctly semantic and grammar
syntax rules.

As illustrated in Fig.1, R2M explores the latent relevant
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Figure 2: An overview of R2M (Recurrent Relational Memory network). We perform unsupervised captioning through mess occurrences of
common visual concepts in disjoint images and sentences. A visual Dictionary D built upon Openimage-v4 is utilized to filter out crucial
visual concepts in image I or sentence S. Inheriting from the encoded vector of visual concepts v “ vI or vS , R2M.Decoder generates
Caption C “ tw1, ¨ ¨ ¨ , wtu by leveraging a two-stage memory mechanism, while R2M.Reconstructor recalls the memory for rebuilding

visual semantics ṽI or ṽS corresponding to respective C. The supervised loss LS on text corpus is optimized via cross-entropy loss LXEpS,Cq
and reconstruction loss LS

recpvS , ṽSq. Then unsupervised loss LI for images is optimized by semantic matching (triplet semantic ranking)

loss LI
M pv̂I , ṽIq and reconstruction loss LI

recpvI , ṽIq.

semantic learning with the memory network, so as to en-
joy the flexible and augmented memory capacity for both vi-
sion and natural language processing tasks [Pei et al., 2019;
Fan et al., 2019]. Our intuition is that memory is proficient
at storing and retrieving relational contexts to correlate in-
put information [Huang and Wang, 2019], while inhibits van-
ishing gradients [Santoro et al., 2018; Fu et al., 2019]. As
illustrated in Fig. 2, R2M consists of two-stage memories,
fusion memory (FM) and recurrent memory (RM). The rela-
tional reasoning based on FM and RM in our captioning pro-
cess, not only considers the dependencies between words and
common concepts, but also distills the useful context into the
memory, retaining for long periods. Technically, R2M per-
forms the recurrent relational reasoning through multi-head
self-attention and a relational gate (detailed in Section 2.2).

So far, FM and RM memories resolve the relational rea-
soning for text generation. As inspired, as shown in Figs.1
and 2, we develop a joint exploitation of supervised learn-
ing (SPL) and unsupervised learning (UPL) on the disjoint
datasets. In particular, the SPL strategy is to learn the memo-
ries and make sentences from several salient words that sep-
arately appeared in text corpus, while the UPL training is to
fine-tune the memories and make much more appropriate sen-
tences about the visual context in the image. The supervised
training on text corpus incorporates inductive semantic bias
into the language model training. Turning to visual concepts
in images without supervision cues, we explore a semantic
matching (hinge-based triplet ranking) loss LI

M and recon-
struction loss. These two losses encourage the cross-modal
similarity score of image, along with the generated sentence
to be larger than that of the other sentences. For LI

M , we
distinguish the negatives pI 1,CIq and pI,C1q from a positive
image pair pI,CIq, which is discussed in Section 2.4.

The major contributions are summarized as follows:

• Orthogonal to GAN-based architectures for unsuper-
vised image captioning, we propose a novel light Recur-
rent Relational Memory Network (R2M ), which merely

utilizes the attention-based memory (detailed in Sec-
tion 2.2) to perform the relational semantics reasoning
and reconstruction.

• A joint exploitation of Supervised learning on text cor-
pus and Unsupervised learning on images is proposed.
We optimize the cross-modal semantic alignment and
reconstruction via an unsupervised manner to achieve a
novel concepts-to-sentence translation.

• The proposed R2M achieves better performances than
state-of-the-arts on all the current unsupervised datasets:
MSCOCO paired Shutterstock captions, Flickr30k
paired MSCOCO captions and MSCOCO paired GCC
(Google’s Conceptual Captions).

2 Proposed Method
In this section, we formally discuss our proposed R2M . The
overall architecture of R2M is depicted in Fig.2, which con-
sists of three modules: encoder, decoder and reconstructor.

2.1 R2M. Encoder
We first discuss the encoder. A visual dictionary D is learned
ahead by using Faster R-CNN [Huang et al., 2017] trained
on a public dataset OpenImages-v4 [Krasin et al., 2017;
Kuznetsova et al., 2018] to cover the majority of common
visual concepts in daily conversations, which is used to filter
out visual concepts V “ tvi|ki“1u of image I or sentence S.
After that, visual concepts V are randomly and sequentially
incorporated into LSTM with their word embeddings, leading
to the encoded vector v “ vI or vS from I or S.

2.2 R2M. Decoder
Details of decoder are illustrated in Fig.3. The effect of
R2M.Decoder is to generate grammatical and semantical
sentences from a few discrete words, e.g., translating “man”
and “motorcycle” to “a man riding on the back of a motor-
cycle”. The set of visual concepts has no available grammar
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and syntax contexts. Based on that, we train the model to
think, infer and talk about as human beings. To address this
issue, we propose a memory-based decoder, which not only
considers the correlation between visual concepts and current
generated word, but also captures the temporal dependencies
and distills the underlying memory information.

Relation Learning I: Fusion Memory (FM)
As shown in Fig.3, the fusion memory (FM) in the decoder
phase is used to learn the relationship between visual con-
cepts and generated words, while recurrent memory (RM) in
both decoder and reconstructor recurrently updates the mem-
ory to deliver useful semantics. At time step t, FM learns
the implicit relationship between the encoded concept vec-
tor v P R

d and previous generated word wt´1 P R
d. We

adopt a row-wise concatenation to acquire a joint feature ma-
trix xt “ rv;wt´1s P R

2ˆd, upon which multi-head self-
attention [Vaswani et al., 2017] is performed. The intuition
is to explore the correlation between v and wt´1. We con-
sider the influences: v Ñ v, v Ñ wt´1, wt´1 Ñ wt´1 and
wt´1 Ñ v. They are performed by the dot-product of query
and key transformers of xt as follows:

AvØwt´1 “
„

v Ñ v, wt´1 Ñ v
v Ñ wt´1, wt´1 Ñ wt´1

j
P R

2ˆ2

“ softmax
`
xtUqloomoon
query

¨p xtUkloomoon
key

qJ{a
λ1

˘
,

(1)

where Uq, Uk P R
dˆdk are parameters of linear transforma-

tions of xt (query and key); λ1 is a scaling factor to balance
the fusion attention distribution.

The cross interaction between v and wt´1 is calculated
based on both attended weights and values as follows:

x̃t “ AvØwt´1
¨ prv;wt´1s ¨ Uvqloooooooomoooooooon

value

P R
2ˆdv , (2)

where Uv P R
dˆdv is another learnable parameter of linear

transformations of xt (value).
To ensure diverse and comprehensive attention guidance,

we fuse v and wt´1 from H perspectives. There are H heads
of independent attention executions. The outputs are concate-
nated into a new matrix x1

t as follows:

x1
t “ “

x̃h
t

‰ˇ̌ˇ̌H
h“1

“ rx̃1
t , ¨ ¨ ¨ , x̃H

t s P R
2ˆpH¨dvq, (3)

where || denotes column-wise concatenation. Finally, we use
a fully-connection (linear) layer to convert the matrix x1

t into
a fusion-aware feature ft below:

ft “ FCpx1
tq P R

d. (4)

Relation Learning II: Recurrent Memory (RM)
Observing ft at the t-th time step, RM recurrently learns a
decoded memory variable Md

t as shown in Fig.4. To distill
the information worthy to retain in memory, we apply a rela-
tional gate for the recurrent memory updating among sequen-
tial learning. First, the multi-head self-attention is recycled
to model latent transformers of previous memory state Md

t´1

and fusion-aware feature ft , where Md
0 is initialized with

K

V

Q

K

V

Q

Figure 3: Memory mechanism in R2M.Decoder. For the t-th step,
FM fuses the encoded vector of visual concepts v and the previous
word wt´1 to a semantic vector ft, and the RM unit updates memory
Md

t by incorporating [Md
t´1,ft]. Both of them indicate the multi-

head cross attention among different semantic variables.

zero-padding. Note that we merely focus on the memory vari-
ation itself. The query is related to Md

t´1, key and value re-

fer to rMd
t´1;fts, implying that the joint effect of rMd

t´1;fts
is learned under the guidance of Md

t´1. In this part, the de-
tailed dimensions of parameters are shown in Fig.4.

Ah
ftÑMd

t´1
“rMd

t´1 ÑMd
t´1,ft ÑMd

t´1sh

“softmax̀ Md
t´1W

h
qlooomooon

query

¨prMd
t´1;ftsWh

kloooooomoooooon
key

qJ{aλ2

˘
,

(5)

M 1d
t “

”
Ah
ftÑMd

t´1
¨
´

rMd
t´1;ftsWh

vlooooooomooooooon
value

ı̄ˇ̌ˇ̌H
h“1

(6)

where Wh
q ,W

h
k P R

dˆdK and Wh
v P R

dˆdV are learnable pa-
rameters, and λ2 is the scaling factor to balance the attention
distribution in RM.

Module ψ M 1d
t is then fed into two residual connection

layers and one row-wise multi-layer perception (MLP) with

layer normalization. Thus, we achieve a memory gain M̃d
t .

Relational Gate To model the temporal dependencies
along the adjacent memories, we update the memory state
in a gated recurrent manner. Specifically, we apply input gate
gi,t and forget gate gf,t to balance the memory updating from

the current memory gain M̃d
t and original memory Md

t´1, re-

spectively. Both gi,t and gf,t are affected by ft and Md
t´1.

$’&
’%

gi,t “ σpWi ¨ ft ` Ui ¨ tanhpMd
t´1q ` biq

gf,t “ σpWf ¨ ft ` Uf ¨ tanhpMd
t´1q ` bf q

Md
t “ gi,t d tanhpM̃d

t q ` gf,t d Md
t´1,

(7)

where d and σ denote dot product and sigmoid functions.
Based on the updated memory Md

t , RM outputs the word wt:

wt “ argmaxtsoftmaxpWd ¨ Md
t qu, (8)

where Wd is a learnable matrix that maps Md
t to a vector with

the dictionary size.

2.3 R2M. Reconstructor
So far, the decoder yields a pipeline to translate discrete vi-
sual concepts into a formal sentence. Here, we attempt to
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Figure 4: Relational gate in the RM unit of R2M.Decoder. Turning
to R2M.Reconstructor, based on the same RM unit, we incorpo-
rate the previous reconstructed memory Mr

t´1 and current decoded

vector Md
t to learn current reconstructed memory Mr

t . Here, d, σ,
and L denote dot product, sigmoid activation and a fully-connection
(linear) layer, respectively.

ensure that R2M can talk about correct contents. As in-
spired, we reversely reconstruct the concept semantics, i.e.,
rebuilding the crucial concept semantics from the generated
sentence. We adopt the memory unit RM to compose the
R2M.Reconstructor. Note that learnable parameters of RM
in R2M.Decoder and Reconstructor are completely differ-
ent.

If we define the RM operation in R2M.Decoder as a
function Md

t “ RMpMd
t´1, ftq involving Eqs. 5„7, the

R2M.Reconstructor operation is formulated as follows:

Mr
t “ RMpMr

t´1,M
d
t q, t P t0, ¨ ¨ ¨ , lenu, (9)

where Mr
t indicates a reconstructed memory at time t, Mr

0 is
initialized with zero-padding, and len is the length of the gen-
erated caption C. The last output of R2M.Reconstructor is
treated as the reconstructed vector of concepts, denoted as ṽI

or ṽS corresponding to image I or sentence S.

2.4 Training
Supervision Learning on Text Corpus
We train the concepts-to-sentence decoder R2M.Decoder by
maximizing log-likelihood of the generated sentences with
original corpus sentences:

LXE “ ´
lenÿ
t“1

logppwt|wt´1q. (10)

For R2M.Reconstructor, there is the reconstructed vec-
tor ṽS corresponding to sentence S. We align it in an unsu-
pervised mode. The full objective on text corpus is:

LS “ LXE ` βLS
rec, (11)

where LS
rec “ ||vS ´ ṽS ||2L2, β is a hyper-parameter, and

||.||2L2 denotes the L2-norm loss.

Unsupervised Visual Alignment on Images
The remaining question is how to achieve a better general-
ization ability with no supervision cues for image caption-
ing? To answer this question, we adopt a hinge-based triplet
ranking loss LI

M , which encourages the semantic relevance
of pI,CIq to be much larger than other negative examples.
We choose the hardest negatives I 1 and C1 for a positive pair
pI,CIq, and perform LI

M as follows:

LIM “rm ´ SpI,CIq ` SpI 1,CIqs``
rm ´ SpI,CIq ` SpI,C1qs`

s.t., I 1 “ argmax
I1‰I

SpI 1,CIq,C1 “ argmax
I1‰I

SpI,CI1 q,
(12)

where rxs` “ maxpx, 0q, Sp¨q is the similarity function cal-
culated by inner product, and m serves as a margin parameter.
SpI,CIq “ Spv̂I , ṽIq, where v̂I is the visual feature of im-
age I extracted by Inception-V4 [Szegedy et al., 2017] and
ṽI is the reconstructed vector by the RM unit. For compu-
tational efficiency, we search the negatives I 1 and C1 within
each mini-batch instead of the entire training set.

Besides, the image reconstruction loss LI
rec is utilized to

train the model. The full objective on images is:

LI “ LI
M ` γLI

rec, (13)

where LI
rec “ ||vI ´ ṽI ||2L2 and γ is a hyper-parameter.

3 Experiments
3.1 Dataset and Metrics
We test all the existing unsupervised image captioning
datasets, including (1) MSCOCO images [Lin et al., 2014]

paired with Shutterstock captions [Feng et al., 2019]; and (2)
Flickr30k images [Young et al., 2014] paired with MSCOCO
captions and (3) MSCOCO images paired with Google’s
Conceptual Captions (GCC) [Sharma et al., 2018; Laina et
al., 2019]. In the test splits of datasets, each image has five
ground-truth captions.

3.2 Implementation Details
We split each image set and filter captions as [Feng et al.,
2019; Laina et al., 2019]. The visual dictionary D in Fig.2
is collected by a pre-trained Faster R-CNN [Huang et al.,
2017] OpenImages-v4 [Krasin et al., 2017; Kuznetsova et
al., 2018]. We merge the visual concepts in D and words
in training captions into a large vocabulary, to cover the ma-
jority of the to-be-generated words. The vocabulary sizes of
the three datasets are 18,679/11,335/10,652, respectively, in-
cluding tokens ă#startą, ă#endą, and ăUNKą. For ex-
perimental setting, we filter out visual concepts form images
with the detected score ě 0.3. Both the sizes of LSTM and
RM memory are set to N “ 1 and d “ 512. The parameters
of multi-head self-attention are H “ 2, dk “ dK “ 256,
and dv “ dV “ 256. The margin in Eq. 12 is m “ 0.2.
Adam optimizer is adopted with batch size of 256. For three
datasets, hyper-parameters (β, γ) are set to (1, 1), (1, 1), (0.2,
0.2). We train the model with a loss LXE under learning rate
10´4, while fine-tune it with the joint loss LS . After that, LI

M
is used to train with a learning rate 10´5. Finally, we jointly
train the model with LI . In the test process, we use the beam
search tactic [Anderson et al., 2017] with width of 3.
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Dataset
Method B-1 B-2 B-3 B-4 METEOR ROUGE CIDEr SPICE

ImagesØCaptions

MSCOCOØShutterstock
UC-GAN [Feng et al., 2019] 41.0 22.5 11.2 5.6 12.4 28.7 28.6 8.1

R2M 44.0 25.4 12.7 6.4 13.0 31.3 29.0 9.1

Flickr30kØMSCOCO
SME-GAN [Laina et al., 2019] - - - 7.9 13.0 32.8 9.9 7.5

R2M 53.1 32.8 19.2 11.7 13.7 35.9 18.1 8.3

MSCOCOØGCC
SME-GAN [Laina et al., 2019] - - - 6.5 12.9 35.1 22.7 7.4

R2M 51.2 29.5 15.4 8.3 14.0 35.0 29.3 9.6

Table 1: Performance comparison with the state-of-the-art methods. The best performance is marked with bold face.

Dataset Method B-1 B-2 B-3 B-4 M R C S

MSCOCOØ
D w/o FM 33.0 19.0 9.6 4.9 10.5 26.9 23.7 7.6

D w/o Memory in RM 39.9 22.3 10.8 5.2 12.1 28.9 25.9 8.4

Shutterstock
R w/o Memory in RM 38.8 21.6 10.6 5.1 10.8 26.8 24.5 8.0

D&R w/o Memory in RM 40.5 22.3 10.6 5.2 12.2 28.8 25.9 8.5
R2M 44.0 25.4 12.7 6.4 13.0 31.3 29.0 9.1

Flickr30kØ
D w/o FM 52.9 32.5 18.8 11.2 13.0 35.5 14.9 8.0

D w/o Memory in RM 52.5 32.4 19.0 11.6 13.0 35.5 16.1 7.8

MSCOCO
R w/o Memory in RM 51.5 30.9 17.5 10.3 13.3 35.0 16.3 7.9

D&R w/o Memory in RM 52.2 31.8 18.5 11.1 13.2 35.6 16.0 8.1
R2M 53.1 32.8 19.2 11.7 13.7 35.9 18.1 8.3

MSCOCOØ
D w/o FM 39.1 23.4 12.2 6.7 11.3 32.4 23.9 7.8

D w/o Memory in RM 43.0 24.8 12.5 6.7 12.4 32.5 27.1 8.8

GCC
R w/o Memory in RM 47.2 26.9 13.9 7.3 12.9 33.2 28.1 9.0

D&R w/o Memory in RM 43.6 25.8 13.4 7.3 12.5 33.3 27.8 8.7
R2M 51.2 29.5 15.4 8.3 14.0 35.0 29.3 9.6

Table 2: Ablation studies of R2M with different memory settings.
The best performance is marked with bold face. 1© In “D w/o FM”,
ft is calculated by a linear layer on the concatenation of v and w. 2©
“D&R w/o Memory in RM” replaces the RM operation by LSTM
in both R2M.Decoder and Reconstructor. 3© “D w/o Memory
in RM” and 4© “R w/o Memory in RM” replaces RM by LSTM in
respective R2M.Decoder and Reconstructor.

3.3 Experimental Results and Analysis
Comparison with the State-of-the-arts
R2M exhibits large improvements across all the metrics.
Both UC-GAN [Feng et al., 2019] and SME-GAN [Laina
et al., 2019] rely on complicated GAN training strategies,
whereas ours R2M is a memory solution. As shown in
Table 1, R2M upgrades BLEU-4 (B-4) by 14.3%, 48.1%
and 27.7% on three datasets, where BLEU-4 involves 4-
gram phrases. It implies the stronger capacity of R2M
to learn long-range dependencies than others. R2M also
raises CIDEr/SPICE, from 28.6/8.1 to (29.0/9.1), 9.9/7.5
(18.1/8.3) and 22.7/7.4 (29.3/9.6). The promising improve-
ments demonstrate the consistency of superior performances.
With the released code of UC-GAN [Feng et al., 2019] on the
MSCOCOØShutterstock dataset, here is an efficiency com-
parison: R2M vs. UC-GAN « 35 min vs. 34 hours. R2M
also enjoys higher computational efficiency.

Ablation Study of R2M

To verify each component in R2M , we propose the ablation
study. (1) Effect of FM. Compared to the entire R2M , the
performance of “D w/o FM” drops significantly, e.g., with
18.3%, 17.7% and 18.4% reduction of CIDEr (C) on three
datasets in Table 2. FM effectively implements the implicit
correlation between visual concept vector and word embed-
ding. (2) Effect of memory in RM. For Table 2, either “D,
R or D&R w/o Memory in RM” suffers from worse per-

Dataset LXE LS
rec L

I
M LI

rec B-1 B-2 B-3 B-4 M R C S

MSCOCOØ
� 42.2 23.2 11.3 5.7 13.0 29.2 25.4 9.0
� � 44.7 25.0 12.2 6.0 13.3 30.7 27.0 9.1

Shutterstock � � � 44.2 25.4 12.7 6.3 13.1 31.3 28.9 9.1
� � � � 44.0 25.4 12.7 6.4 13.0 31.3 29.0 9.1

Flickr30kØ
� 49.9 30.0 17.1 10.1 13.5 34.9 16.4 8.2
� � 49.4 29.8 17.4 10.5 13.8 35.1 16.7 8.2

MSCOCO � � � 51.8 31.6 18.4 11.0 13.9 35.7 17.8 8.3
� � � � 53.1 32.8 19.2 11.7 13.7 35.9 18.1 8.3

MSCOCOØ
� 46.4 25.8 12.8 6.7 13.9 32.6 26.9 9.3
� � 49.2 27.9 14.3 7.7 13.6 33.6 28.2 9.3

GCC � � � 51.0 29.3 15.3 8.4 13.9 34.8 29.1 9.6
� � � � 51.2 29.5 15.4 8.3 14.0 35.0 29.3 9.6

Table 3: Ablation studies of R2M with different losses. The best
performance is marked with bold face.

formance, e.g., on dataset MSCOCOØGCC, dropping the
CIDEr from 29.3 to 27.1, 28.1 and 27.8. RM excels at storing
and retrieving information across time than classical LSTM,
to effectively handle sequential learning. (3) Effect of Loss.
In each block diagram of Table 3, the first line records the
result of model trained with only LXE on text corpus. Note
that this baseline is competitive and outperforms the existing
methods. The SPICE (S) is increased by around 11.1%, 9.3%
and 25.7% compared on three datasets. By gradually incor-
porating LS

rec, LIM and LI
rec, the model performs much better.

The CIDEr gradually raises from 25.4 to 27.0, 28.9 and 29.0
on MSCOCOØShutterstock. Especially after the assistance
of semantic matching loss LM , the CIDEr is significantly im-
proved, nearly 7.0%, 6.6% and 3.2% on all datasets.

Qualitative Results
Visualization of Attention Weights in FM & RM. Fig.5 il-
lustrates an example of memory learning in R2M.Decoder,
which is interpretable. FM displays the average weight of
multi-head attention, while RM offers H “ 2 heads attention.
With the beginning token ă#startątt“0u and the encoded
concept vector v, FM pays more attention to the richer se-
mantics v. And at time t “ 2, FM focuses much more on the
previous word portraittt“1u as portrait is the first generated
concept and deserves more attention. Then, we discuss the
interpretation of RM. Taking previous word wearingtt“9u
as an example, it affects the generation of sunglassestt“10u
more influentially than the memory Md

t . However, at t “ 11,
under the previous cue sunglassestt“10u, the model infers

a relational conjunction andtt“11u by mainly recalling Md
t .

The same situation holds at the last time umbrellatt“14u,

there is no relevance cues to be found from Md
t , the model

decides to terminate the entire generation process.
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Figure 5: Visualization results of attention weights in FM and RM units of R2M.Decoder. The weights reflect how much attention the
model pays to each input variable.

↔
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Figure 6: Qualitative examples of R2M . Visual concepts are de-
tected by Faster R-CNN. Words in tred, brown, blue, greenu fonts
mark the incorrectly recognized, irrelevant, and new detected con-
cepts, and the adjective, respectively.

Visualization of Generated Captions. We detect visual con-
cepts and their scores by Faster R-CNN. As shown in Fig.6
(a), phone is an incorrectly detected object with a high score
0.75. While performing training on text corpus with LXE

and LS
rec, R2M translates discrete concepts to a sentence,

still containing phone. With further unsupervised training
on images over LI

M and LI
rec, R2M automatically eliminates

the wrong concept. By contrast, exemplified in Fig.6 (b),
clothing is a correctly identified concept, but irrelevant to
salient visual regions of the image. R2M eliminates the re-
dundant visual concepts yet. Moreover, there are new learned
concepts beach and an adjective young from all the joint SPL
and UPL semantic learning. To strengthen the intuition that
R2M can extrapolate beyond the concepts in the images, we
offer another example in Fig.6 (c). Both the new words beach
and field are undetected visual concepts. Following the tex-
tual cues learning from text corpus, R2M acquires the knowl-
edge to infer a new context-independent concept beach; how-
ever, it is irrelevant. After unsupervised visual alignment
learning, the caption finally outputs a new word field instead
of beach. R2M is effective to infer promising descriptions
about images without annotated captions.

Figure 7: Extensive captions of MSCOCO images in different lan-
guage styles. Words in tbrown, pinku fonts highlight the incorrect
detected concepts and the sentiment adjectives, respectively.

We also extend the experiments with new corpora with dif-
ferent language styles, such as VQA-v2 [Antol et al., 2015]

and SentiCap [Mathews et al., 2016], involving the questions
about the visual content and sentiment captions. For our
experiments, 1,105,904 questions provided by VQA-v2 and
4,892 positive captions of SentiCap are respectively trained
as text corpus. As shown in Fig.7, R2M also excels at ques-
tioning and describing images with positive emotion.

4 Conclusion
This paper proposes a novel recurrent relational memory net-
work (R2M ) for unsupervised image captioning with low
cost of supervision. R2M is a lightweight network, char-
acterizing self-attention and a relational gate to design the
fusion and recurrent memory for long-term semantic gener-
ation. Experimental results show that the R2M surpasses the
state-of-the-arts on three benchmark datasets.
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