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ABSTRACT
Video captioning is a challenging problem in neural networks, com-
puter vision, and natural language processing. It aims to translate a
given video into a sequence of words which can be understood by
humans. The dynamic information in videos and the complexity
in linguistic cause the difficulty of this task. This paper proposes a
semantic enhanced encoder-decoder network to tackle this prob-
lem. To explore a more abundant variety of video information, it
implements a three path fusion strategy in the encoder side which
combines complementary features. In the decoding stage, the model
adopts an attention mechanism to consider the different contribu-
tions of the fused features. In both the encoder and decoder side, the
video information is well obtained. Furthermore, we use the idea
of reinforcement learning to calculate rewards based on semantic
designed computation. Experimental results on Microsoft Video
Description Corpus (MSVD) dataset show the effectiveness of the
proposed approach.
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•Human-centered computing→ Empirical studies in HCI; •
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1 INTRODUCTION
Video captioning is a complex problem in machine learning com-
bining computer vision and linguistics, which attracts increasing
attention. It plays a vital role in a wide range of potential applica-
tion fields. For healthy people, comprehending the video content is
a simple task, whereas it is extremely difficult for individuals who
are blind. Audio-described film is a fantastic service to assist indi-
viduals with sight loss to understand the video. It uses a recorded
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narrator to explain the video content. Video captioning is a commit-
ted procedure to produce the narrator, which firstly generates text
information for speech generation. Video captioning is also widely
used in other popular fields such as video retrieval, human-robot
interaction. It can be seen that the research on video captioning
makes extraordinary contributions to the Human-Computer Inter-
face (HCI) for many common purposes. The earliest captioning
task is image captioning [6, 15, 33], aiming at translating an image
into the sentence, which is relatively mature nowadays. Due to the
complexity, the temporality and the mismatch of video frames and
each description word, video captioning faces more challenges than
image captioning.

The approach of video captioning can be roughly divided into
template-based language methods [11, 27, 35] and sequence to se-
quence methods [22, 37]. Recently most video captioning methods
are based on encoder-decoder architecture, which is an effective
approach of sequence training [4, 17, 19]. In the encoder side, fea-
tures are always extracted by powerful pre-trained convolution
neural networks(CNNs), utilizing a fixed-length vector to represent
a given video. Different from images, videos are composed of great
quantities of video frames, which contains not only static infor-
mation but also dynamic information. [4] employs two types of
feature, appearance feature and motion feature. The appearance
feature is the assemble of features of every single frame, and the
motion feature is obtained from a feature collection of several video
clips. [34] uses a global feature, which describes the information
of the whole video. Our proposed model considers all three types
of feature, which contains more complementary video informa-
tion. Recurrent Neural Networks (RNNs) are demonstrated to be
suitable for solving sequence problems. After obtaining the visual
features of the video, RNNs are usually used to further encode the
feature into a vector. The decoder side also uses RNNs to handle
the sequence of words.

To consider the visual information dynamically, attention mech-
anism is proposed, which can pay attention to the key regions in
visual processing and achieve remarkable results. A variety of atten-
tion mechanisms [2, 21, 37, 39] are employed for video captioning.
In the encoder side, an attention mechanism is always implemented
to focus on the most relevant spatial regions. In the decoding stage,
the attention mechanism can be employed in every frame at each
time step [38]. Our SEN adopts an attention mechanism in the de-
coder side for video frames, which is a static vector. The attention
method allows salient video frames to be input in a dynamic way.
It assigns different weights to each temporal vector, the less impor-
tant vectors gain less attention instead of being directly abandoned,
which will not cause the loss of potentially important data.

Sequence problems can be considered as a policy-based rein-
forcement learning task. It allows optimizing the gradient of the
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expected reward, which contributes to image and video captioning
tasks [24, 26]. Traditional training methods in video captioning are
usually trained by a cross-entropy loss, which aims to maximize
the likelihood of the next word by the generating words. As dis-
cussed in [26], this method has two drawbacks. At training time,
the captioning model generates the next word given the previous
ground-truth, whereas at test time it utilizes words sampled by
the model. This exposure bias [25] leads to the deviation at test
time. Another drawback is that there is no direct relation between
loss and the evaluation score. The policy-gradient reinforcement
learning method can directly optimize the evaluation result through
a reward at test time and tackle the exposure bias problem. [24]
proposed a simple weighted cross-entropy scheme for video cap-
tioning. Different from traditional training way, it combines the
advantages of cross-entropy training and reinforcement training
and performs best in all their proposed approaches.

In this paper, we propose a sequence to sequence network to
tackle the problem of video captioning. The model obtains effective
video information in both encoder and decoder side and adopts a
training method of reinforcement learning. The overview of our
framework can be seen in Figure 1. The main contributions are
summarized as follows:

• The model adopts a strategy of multi-feature fusion in the
encoder side. The static, dynamic, and global information
are combined in a complementary way in the encoder side,
which achieves a great complementary effect.

• It employs an attention mechanism in the decoder side,
which pays attention to the important frames while generat-
ing every word and uses a method of reinforcement learning,
which can directly optimize the non-differentiable metrics.

• The evaluation results on MSVD dataset and the contrast
experiments both demonstrate the effectiveness of the model.

The following chapters are distributed as follows. The second part
summarizes the principal methods of recent video captioning. The
third part introduces the detailed method of our proposed model.
The fourth part analyses the experimental results. The last part
summarizes the whole work.

2 RELATEDWORK
VideoCaptioning. In the early years, researchers are concentrated
on image captioning. Due to the wide application of video correla-
tion technology, video captioning begins to gain more attention in
recent years. In the past, [11, 16] uses a two-stage pipeline for video
captioning. The first step is to identify semantic information (e.g.,
subject, verb, object) by detecting the word, and the second step is
to generate the word sequence. The template-based approach is dif-
ficult to attach the rich language content in human language so that
it fails to make a satisfactory description. Inspired by the significant
effect of the encoder-decoder framework in machine translation [7],
the encoder-decoder framework is also applied in image captioning
tasks [9, 33]. [31] employs a sequence to sequence method to tackle
the video captioning, which is also a framework of encoder-decoder.
In this approach, the sequential frames are encoded firstly and the
word is generated one by one. The encoder is generally the CNNs,
using the final full connection layer or convolutional layer features
as the image features. In video captioning tasks, the encoder uses

RNNs to further encode the extracted visual feature, and generate
the representation of the video. The decoder is generally composed
of the RNNs, which generates a sequence of words that compose
the caption of video at each time step. Currently, most captioning
methods are based on encoder-decoder architectural.

Feature Fusion. The visual feature contains a variety of in-
formation in images. Considering the different categories of the
feature, fusing different kinds of features helps to obtain more com-
plete visual information. The multi-feature-fusion strategy has been
played a vitally important role in computer vision and is widely
used in complex visual tasks [13, 40]. Feature fusion currently is also
popular in image and video captioning tasks [8, 34]. Particularly,
video data consists of complementary multi-type cues due to a large
number of frames and the temporality of video. Nowadays, 3D con-
volutional neural network (3D CNN) [14] is always used to obtain
video features by a set of video frame clips, which is a different way
from image feature extractors. [4] employs two strategies to extract
the video feature. The first strategy is extracting the appearance
feature by an ordinary image feature extractor. The second strat-
egy is using a video feature extractor to obtain the motion feature.
It further fuses these two kinds of video features, which subtly
combines static and dynamic information. Especially, [34] exploit a
diverse video feature fusion, including a global feature to represent
the whole video, which is an important feature complement.

Attention Mechanism. The attention mechanism is currently
popular in deep learning tasks. It has got extraordinary achieve-
ments in machine translation [20], visual captioning [37] and ques-
tion answering [36]. The attention network is designed to choose
the most relevant information to generate the outcome. [33] in-
troduces two attention-based image caption generators under the
encoder-decoder framework. One is stochastic hard attention, which
adopts the method of object detection and is trained by maximizing
the approximate variational lower bound. Another is soft atten-
tion, which is trained by back-propagation methods. The effect
was significantly improved than the model without attention. [1]
proposed bottom-up and top-down attention for captioning and
visual question answering, which is a combined attention mecha-
nism. A variety of attention models in video captioning has been
used flexibly later [2, 37, 38], which not simply pays attention to
the spatial area in an image frame. In the decoder side, since not all
frames in a video are equally relevant to the videos, the attention
mechanism calculates a weight distribution for the frames.

Reinforcement Learning.Most captioning models are trained
by the cross entropy method and maximum likelihood estimation,
which aims to maximize the likelihood of the next predicting word.
There exists a mismatch problem that the objective function is not
the real metric used to evaluate the outcome. It has been shown
that reinforcement learning [28] is desirable in the deep end-to-end
problem. [25] utilized the reinforcement method to optimize non-
differentiable metrics. Reinforcement learning allows optimizing
the gradient of the expected reward by sampling from the model
while training. [25] uses the reinforcement training to optimize
the sequence metrics which is not differentiable. Inspired by the
successful application of reinforcement learning in sequence to
sequence tasks, the algorithm of SCST [26] for image captioningwas
proposed. SCST is a reinforcement algorithm for image captioning,
which utilizes the evaluation metric score at test time as the reward.
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Figure 1: Overview of the proposed model. Given video frames sampled by a video, the appearance feature, action feature and
the global feature are produced by different ways. The model utilize an attentive decoder and use the score of CIDEr metric as
the reward in reinforcement training. The T represents the time dimension, d represents the feature dimension. Noting that
the d1 equals d3.

The outperform system are given higher weight and the inferior
system are given lower weight. Specifically, [24] proposed a set of
reinforcement training methods for video captioning, including a
simple weighted cross-entropy scheme for video captioning, which
is also a variant of the reinforcement algorithm and achieve great
results.

3 METHOD
3.1 Overview of our framework
Video captioning aims at generating a human-understandable sen-
tence to describe a given video. Let V denotes the given video,
[w1,w2 . . . ,wt ] denotes the sequence of the words. As shown in
Figure 1, our proposed model adopts the encoder-decoder frame-
work. First, we employ a triple-path fusion strategy to transform
the given video V into the fused feature F . The fused feature F
is further encoded into the video representation vector Z by a
Long Short Term Memory (LSTM) network. Second, the decoder
inputs V to an attentive LSTM and generates a sequence of words
[w1,w2 . . . ,wt ]. Finally, we use the CIDEr metric to calculate the
reward of each generating sentence and employ the reinforcement
training method.

3.2 Multi-Feature-Fusion Encoder
The encoder obtains three types of visual feature and employs
a fusion strategy to combine these features. The three features
we adopt are the appearance feature, the motion feature and the
global feature. The appearance feature represents the static in-
formation, the motion feature represents the static information.
Particularly, we use the global feature to enhance the local fea-
ture learning. Let f = [f1, f2 . . . , fn ] denotes the final feature, f (a)

= [f1(a), f2(a) . . . , fn (a)] denotes the appearance feature, f (m) =
[f1(m), f2(m) . . . , fn

(m)] denotes the motion feature, and let f (д)

=[f1(д), f2(д) . . . , fn (д)] denotes the global feature. First, we em-
ploy a pre-trained Resnet-50 model [12] to extract the appearance
feature f (a) of each video frames. Second, we employ a 3D-CNN
model to extract the motion feature f (m). And then the global fea-
ture f (д) is obtained by a mean-pooling operation on the extracted
appearance feature:

f (д) =
1
n

n∑
i=1

fi
(m) (1)

We fuse the three feature via concatenation operation:

f = [f (a), f (m), f (д)] (2)

The fused feature flexibly complements different kinds of feature.
After obtaining the final feature f , the module inputs f into an
LSTM to encode the feature into a vector as the representation of
the whole video. We use the LSTM architectures following [10], the
equation are as follows:

it = σ (Wi f ft +Wihht−1 + bi )
ft = σ (Wf f ft +Wf hht−1 + bf )
дt = σ (Wдf ft +Wдhht−1 + bд)
ot = ϕ(Wi f ft +Wf hht−1 + bf )
ct = ft ⊙ ct−1 + it ⊙ дt
ht = ot ⊙ ϕ(ct )

(3)

In the above equation, ⊙ represents the element-wise product
operation, σ represents the sigmoid function, ϕ represents the hy-
perbolic tangent tanh,W∗ represents the trained weight matrices,
b∗ represents the trained biases vectors.
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Figure 2: The expanded view of attentive decoder, the con-
text is the weighted vector calculated by attention mecha-
nism.

The number of encoding steps equals the maximum number of
frames. The final representation vector Z is an assemble of ht in
each encode step. Assuming the number of encoding step is m, Z =
[z1, z2 . . . , zm ], which represents the video information.

3.3 Attention-based Decoder
The overview of the specific implementation method of our at-
tention mechanism is shown in Figure 2. Let z = [z1, z2, . . . , zm ]

denotes the encoded frames. The decoder uses another LSTM to
generate the sequence of words. Meanwhile, an attention model
is applied in this period. Due to the misalignment of video frames
and every word in the caption, the encoded video that should be
paid attention to while generating each word. Thus we adopt the
attention mechanism in [38], which aims to pay attention to the
relevant feature vectors at each time step instead of the spatial area
in each frame. We follow [33] to calculate weights and generate
context vectors in the attention mechanism. Let the ht denotes the
hidden state in the decode process. The attention module maps
the z and the ht into the same dimension, then puts them into a
softmax layer to calculate weights [ω1,ω2, . . . ,ωm ] at each decode
step. Notice that

∑m
i=1 ωi = 1.

α = Linear (z) (4)

β = Linear (ht ) (5)
χ = Linear (α + β) (6)
ω = so f tmax(χ ) (7)
context = R · ω (8)

The encoded vector is weighted as a context vector and be put
into the LSTM network with the word generating in the last step.
Letwt−1 denotes the word vector generating in the last step, ht−1
denotes the hidden state generating in the last step, xt denotes
the vector input in next step, which is calculated through an add
operation:

xt = wt−1 + context (9)
ht = lstm(xt + ht−1) (10)

3.4 Reinforcement Training
Reinforcement training is a popular algorithm in machine learn-
ing. It is usually categorized as the policy gradient algorithm and
Q-learning algorithm. Sequence problems can be considered as a
policy-based reinforcement learning task. The decoder can be con-
sidered as an agent, the generated words and video features can
be considered as the environment, and the prediction of the next
word state can be regarded as the action. The score calculated by
the evaluation methods represents the reward.

A weighted cross-entropy scheme in [30] was proposed which
takes advantage of reinforcement training. Letpθ denotes the policy
gradient, where pθ represents the parameters in our model. Let pθ
denotes the model, which can be seen as a policy network. Letw =
(w1,w2 . . . ,wt ) denotes the word sequence, wherewt is the word
sampled by the model at time t. The aim of reinforcement training
is to minimize the negative reward:

L(θ ) = −Ew∼pθ [r (w)] = −
∑
w

r (w)pθ (w) (11)

To minimize the negative expected reward, L(θ ) might be differen-
tiated:

▽θ Ew∼pθ [r (w)] = Ew∼pθ [▽θ r (w)] (12)
In the above equation, r (w) is a discontinuous function relevant to
θ , so it is not differential. The equation can be further rewritten as:

▽θEw∼pθ [r (w)] = ▽θ

∑
w

r (w)pθ (w)

=
∑
w

r (w) ▽θ pθ (w)

=
∑
w

r (w) ▽θ pθ (w)
▽θpθ (w)

pθ (w)

= Ew∼pθ [r (w) ▽θ loдpθ (w)]

(13)

The above equation demonstrates that the r (w) need not be dif-
ferentiated. [26] proved that choosing the evaluation outcome of
CIDEr as a reward outperforms other metrics as a reward. In this
work, we follow this rule to choose CIDEr metric as our evaluation
method to measure the reward of the generated caption:

r (w) = CIDEr (w1,w2 . . . ,wn ) (14)

wherew is the word sampled from our model. The loss function is
computed as follows:

L(θ ) = −Ew∼pθ [r (w) ▽θ loдpθ (w)] (15)

The weighted loss increases the likelihood of models that gain
greater rewards to increase their effect on training results and
generate more classical captions. This is different from traditional
unweighted cross-entropy models, which often cause heavily pe-
nalization while failing to generate results that are not classical in
the training data. At test time, we utilize the weighted loss above
to optimize our model.

4 EXPERIMENTS
4.1 Datasets
We choose the Microsoft Video Description Corpus (MSVD) [5] as
our dataset. MSVD is an assemble of Youtube clips that gathered
by Mechanical Turk, which requests people to select short clips
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describing a single short activity. The annotators give descriptions
of these chosen videos and each video is labelled by 40 captions. The
description in the corpus is multilingual. In this paper, we choose
only the English descriptions and the punctuation is removed. The
dataset contains 2,089 Youtube video clips, which are labelled with
85K English descriptions. It principally consists of short videos
containing a single action, of which the average duration is 10
seconds. Following previous work [4, 11, 32], we split the dataset
by index as follows: 0∼1,199 for training, 1,200∼ 1,299 for validating,
1,299∼ 1,970 for testing.

4.2 Metrics
We employ four metrics: BLEU [23], ROUGEL [18], CIDEr [30] and
METEOR [3] for evaluating the performance of our model. BLEU
is the method of word n-grams between generating words and
ground-truth words. Following most typical works, we employ a
four-grams method, also known as BLEU@4 to evaluate our model
effect. ROUGEL is a method that calculates an F-measure with the
recall bias utilizing the way of the longest common subsequence
calculation. CIDEr is a method that calculates the mean cosine
similarity of n-grams in the generated sentence and the reference
captions. It employs TF-IDF to weight them. METEOR aligns the
caption with one or more labels. Alignment is based on exact, stem,
synonym, phrase, and meaning matches between words or phrases.
CIDEr and METEOR have higher accuracy than the other two
metrics most of the time, especially while the reference descriptions
are fewer. Specifically, we choose the metric CIDEr as the method
to further calculate the reward. All metrics are computed using the
tool released by Microsoft COCO caption Evaluation Server1.

4.3 Experiment Setup
Preprocessing and Training Details. The videos are sampled
every 9 or 10 frames. We set the maximum length of the image
sequence to be 30, and the maximum length of the text sequence to
be 30. The length of the clip list is 30, and the length of every clip
is 16. In the training process, we use a tag <bos> as the begin of
the caption, a tag <eos> as the end of the caption, and a tag <uk>
to represent the unknown word. We initialize the cell gate and the
hidden state value to be zero in the two LSTMs in our model.

We set the teacher_forcing_ratio to 0.96 at the begin and de-
crease it to 0.6 gradually. In the probability of teacher_forcing_ratio,
ground_truth is used for training. While a new word is generated,
the former word in ground truth is used as the input. Otherwise,
the model chooses the sampled word as input. The cross-entropy
training process is performed by minimizing the log-likelihood loss.
We choose the Adadelta optimizer to optimize the parameters of
the model. In the loss section, we use doubly stochastic attention
regularization the same in [33]. The learning rate is 3e-4 and the
decay parameter is ρ=0.95, ϵ=10×10−7. To prevent overfitting, we
dynamically reduced the learning rate after 50 epochs. The model
is trained for 100 epochs in this stage. In the reinforcement training
period, the model uses the CIDER metric as the reward weighted
the cross-entropy loss. We train the model for one epoch in this
stage on the premise of completing cross-entropy training.

1 https://github.com/tylin/coco-caption

Table 1: Experimental Results on MSVD, where CIDEr-D,
B@4, ROUGEL and METEOR are different metrics for eval-
uation. For our SEN model, A represents using the appear-
ance feature, M represents using the motion feature, G rep-
resents using the global feature, a represents using the atten-
tion mechanism, and rl represents using the reinforcement
training.

Model CIDEr-D B@4 ROUGEL METEOR
LSTM-YT [32] - 33.3 - 29.1

SA-Googlenet-C3D [37] - 41.9 - 29.6
S2VT-VGG+Flow [31] - - - 29.8

BANET [4] 63.5 42.5 - 32.4
LSTM-E [22] - 45.3 - 31.0
SEN (A-M) 57.7 40.7 66.8 29.3

SEN (A-M-G) 59.6 40.5 65.8 29.4
SEN (A-M-a) 62.7 42.5 67.6 30.3

SEN (A-M-G-a) 64.7 42.7 68.0 30.0
SEN (A-M-a-rl) 65.6 46.2 66.8 30.8

SEN (A-M-G-a-rl) 67.0 46.5 69.3 31.6

Feature Extraction Process. The appearance feature means
static information, which requires a network for extracting image
features. In this work, for the appearance feature, we employ a
pre-trained Resnet-50 model, to extract features for every sampled
frame. The Resnet-50 model is pre-trained on the ImageNet dataset.
We apply the activation units at the penultimate layer of the Resnet-
50 model and the dimension of the motion feature is 2,048. For
motion appearance, we firstly generate video clips following the
method mentioned in preprocessing. We further input every video
clip into a 3D-CNN network [29]. The 3D-CNNmodel is pre-trained
on the Sports-1M dataset. Similar to obtaining a motion feature,
we also apply the activation units at the penultimate layer of the
3D-CNN model. The dimension of the motion feature is 4,096. As
introduced in the method part, for global features, we implement
a mean-pooling operation on the produced appearance feature. In
order to keep the dimensions consistent, we make 2,048 replications
for the acquired features. The dimension of the global feature is
consistent with the appearance feature.

Time Complexity. In our experiment, it takes 40 minutes to
extract 1,300 video features. When the training batch-size is set to
30, the entire training process is seven hours. The trained model
can generate the features of video into text immediately. For a
single given video in our dataset, it takes less than three seconds to
process the video and extract all the features. It can be seen that
this algorithm has a promising prospect for real-time application
such as provide service for audio described films.

4.4 Experimental Results
On the MSVD dataset, we carry out a number of comparative ex-
periments. Our semantic enhanced encoder-decoder network is
abbreviated as SEN. The experimental result is shown in Table 1.
Here, A represents using appearance feature, M represents using the
motion feature, G represents using the global feature, a represents
using attention mechanism, and rl represents using reinforcement
learning.
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Figure 3: Comparison of our example results and ground-truth. Here, GTmeans ground-truth and SEN (A-M-G-a-rl) represents
our methods. A represents using appearance feature, M represents using the motion feature, G represents using the global
feature, a represents using the attention mechanism, and rl represents using the reinforcement learning.

Table 2: The comparative experiment of SEM (A-M), SEM (A-
M-G), SEN (A-M-a) and SEN (A-M-G-a), G represents using
the global feature, a represents using the attention mecha-
nism, which shows the role of feature fusion and attention
mechanism.

Model CIDEr B@4 ROUGEL METEOR
SEN (A-M) 57.7 40.7 66.8 29.3

SEN (A-M-G) 59.6 40.5 65.8 29.4
SEN (A-M-a) 62.7 42.5 67.6 30.3

SEN (A-M-G-a) 64.7 42.7 68.0 30.0

Table 3: The comparative experiment of SEN (A-M-a), SEN
(A-M-a-rl), SEN (A-M-G-a) and SEN (A-M-G-a-rl), where rl
represents using the reinforcement learning, which shows
the role of reinforcement learning.

Model CIDEr B@4 ROUGEL METEOR
SEN (A-M-a) 62.7 42.5 67.6 30.3
SEN (A-M-a-rl) 65.6 46.2 66.8 30.8
SEN (A-M-G-a) 64.7 42.7 68.0 30.0
SEN (A-M-G-a-rl) 67.0 46.5 69.3 31.6

Table 4: The comparative experiment of our models of dif-
ferent components of modules.

Model CIDEr B@4 ROUGEL METEOR
SEN (A-M) 57.7 40.7 66.8 29.3

SEN (A-M-G-a) 64.7 42.7 68.0 30.0
SEN (A-M-a-rl) 65.6 46.2 66.8 30.8

SEN (A-M-G-a-rl) 67.0 46.5 69.3 31.6

First, we compare our own models with different modules. The
based framework of our work uses a simple encoder-decoder frame-
work, which adopts an LSTM to encode the video and uses another

Table 5: The contrast experiment of SEN (A-M-G), SEN (A-M-
G-a) and SEN (A-M-G-a-rl) with other works.

Model CIDEr B@4 ROUGEL METEOR
LSTM-YT [32] - 33.3 - 29.1
SEN (A-M-G) 59.6 40.5 65.8 29.4

SA-Googlenet-C3D [37] - 41.9 - 29.6
S2VT-VGG+Flow [31] - - - 29.8

BANET [4] 63.5 42.5 - 32.4
SEN (A-M-G-a) 64.7 42.7 68.0 30.0
LSTM-E [22] - 45.3 - 31.0

SEN (A-M-G-a-rl) 67.0 46.5 69.3 31.6

LSTM unit to generate words. SEN (A-M) represents using the
fusion feature of appearance feature and motion feature in the en-
coder side, which is the most basic model to compare in our work.
Furthermore, we carry out contrast experiments with other classic
captioning works including LSTM-YT [37], S2VT [31], LSTM-E [22].
Particularly, we compare our work with BANET [3], which employs
a hierarchical boundary-aware neural coder for video captioning
and uses a boundary detector to enhance the function of the en-
coder. This model is based on the encoder-decoder framework and
adopts the fusion strategy to combine appearance feature and mo-
tion feature, which is very similar to what we do in this respect.

It can be seen from the comparative experiments that feature
fusion, attention mechanism, and reinforcement training methods
all play a good role in our model. The example results of our model
are shown in Figure 3. It can be seen that in some cases our model
outputs a completely accurate result. In other cases, our model pre-
dicts results very close to the ground-truth, which also accurately
describes video content.

The effectiveness of feature fusion. It can be seen from Ta-
ble 2, SEN (A-M-G) adds the global feature to the based SEN (A-M)
model, which improves the CIDEr metric from 57.7 to 59.6. SEN
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(A-M-G-a) adds the global feature to the A-M-a model, which im-
proves the CIDEr metric by 2 points. In contrast, models with global
features are more effective than models without global features. All
these two comparisons indicate the global features complement the
other two features effectively.

The effectiveness of attention model. The result in Table 2
also shows the significant effect of our attention mechanism. SEN
(A-M-a) adds an attention mechanism in the decoder side to the
A-M model, which improves the CIDEr metric by 5 points and has
a prominent effect on all the other metrics. SEN (A-M-G-a) adds the
attention mechanism to the SEN (A-M-G) model, which improves
the CIDEr metric by 5.1 points and also has a prominent effect
on all the other metrics. Both of these two groups of comparative
experiments effectively prove the remarkable effect of attention
mechanism at the decoder side.

The effectiveness of reinforcement training. As is shown
in Table 3, SEN (A-M-a-rl) adds a reinforcement training method to
SEN (A-M-a) model, which improves the CIDEr by 2 points. SEN
(A-M-G-a-rl) adds a reinforcement training method to SEN (A-M-
G-a) model, which improves the CIDEr by 2.3 points and improves
the effect on other metrics meanwhile. These demonstrate that
compared to just using cross-entropy, reinforcement training is an
ingenious method to optimize the evaluation results.

Comprehensive effect of the model. As shown in Table 4,
SEN (A-M-G-a) adds the global feature in the encoder side and the
attention mechanism in the decoder side respectively to the based
model, which demonstrates the effectiveness of the common effect
of feature fusion on the encoding side and attention mechanism
on the decoding side. SEN (A-M-a-rl) employs attention mecha-
nism and reinforcement learning method to the A-M model, which
demonstrates the common effect of attention mechanism and rein-
forcement learning. SEN (A-M-G-a-rl) outperforms all our models,
showing the co-efficiency of our modules.

Contrast experiment withmodels in other works.We com-
pare our experimental results with several well-knownworks. LSTM-
YT implements only an appearance feature to encode the video.
There has been a marked improvement of our SEN (A-M-G) model
in the BLEU4 and METEOR, which demonstrates the effective-
ness of our fusion strategy encoder. SA extracts video features by
GoogleNet and 3D-CNN network but uses a simple LSTM to decode
the video. Compare our SEN (A-M-G-a) model with SA, our score
of CIDEr is 5.1 higher than SA, which shows our attention-based
decoder does have a marked effect. Our SEN (A-M-G-a) also outper-
forms the classic sequence model S2VT. The model of BANET uses
a structure of hierarchical LSTM and employs a boundary detector,
which aims to alter the temporal connections of the network for
a given video. The purpose of attention mechanism in our model
is to focus on the important frames, which is also a selection op-
eration and somewhat similar to the aim of BANET. In our work,
we leave out the part of boundary detection and only adopt one
layer of the LSTM structure to simplify the model of the encoder
side. SEN (A-M-G-a) exceeds BANET in both CIDEr and BLEU4
metric. LSTM-E exploit a method of visual-semantic embedding for
video captioning. Our SEN (A-M-G-a-rl) outperforms the LSTM-E
in BLEU4 and METEOR, which employs a more simple encoder.

All the comparative experiments show the remarkable result,
especially in the CIDEr metric, all modules in our model show

significant function, which demonstrates the effectiveness and ro-
bustness of our model.

5 CONCLUSION
In this work, we propose a semantic enhanced encoder-decoder
network for video captioning. The encoder first exploits a three-
path fusion strategy to effectively leverage three complementary
features effectively. The decoder adopts an attention mechanism to
consider the different contributions of the fused feature while gen-
erating words at each time step. The model further utilizes the idea
of reinforcement learning to calculate rewards based on semantic
designed computation to optimize the model. The performance on
MSVD dataset and the contrast experiments all demonstrate the
effectiveness of our model.
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