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Textual-Visual Reference-Aware Attention
Network for Visual Dialog

Dan Guo , Hui Wang, Shuhui Wang , and Meng Wang , Senior Member, IEEE

Abstract— Visual dialog is a challenging task in multimedia
understanding, which requires the dialog agent to answer a
series of questions that are based on an input image. The
critical issue to produce an exact answer is how to model the
mutual semantic interaction among feature representations of
the image, question-answer history, and current question. In this
study, we propose a textual-visual Reference-Aware Attention
Network (RAA-Net), which aims to effectively fuse Q (question),
H (history), Vl (local vision), and Vg (global vision) to infer
the exact answer. In the multimodal feature flows, RAA-Net first
learns the textual context through multi-head attention between
Q and H and then guides the textual reference semantics to the
image to capture visual reference semantics by self- and cross-
reference-aware attention in and between Vl and Vg . In the
proposed RAA-Net, we exploit the two-stage (intra- and inter-)
visual reasoning mechanism on Vl and Vg . Extensive experiments
on the VisDial v0.9 and v1.0 datasets show that RAA-Net achieves
state-of-the-art performance. Visualization results on both visual
and textual attention maps further validate the remarkable
interpretability achieved by our solution.

Index Terms— Visual dialog, attention network, textual refer-
ence, visual reference, multimodal semantic interaction.

I. INTRODUCTION

RECENTLY, cross-modal semantic understanding
[1]–[5] between vision and language [1]–[3] has received

considerable attention, such as image captioning [6]–[11],
visual grounding [12]–[17], and visual question answering
(VQA) [18]–[22]. In these studies, semantic referring between
vision and language is performed in a one-way single round.
Taking VQA as an example, the agent is required to first
understand a specific question, then ground the relevant
visual contents in the image, and finally infer an answer.
In contrast, visual dialog [23]–[26], as an extension of VQA,
is bidirectional under multi-round question-answer (QA) pairs
discussing the same image. It has a stronger correlation in the
semantic feedback during dialog. In the visual dialog task,
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Fig. 1. Illustration of textual and visual attention maps in our solution
on the basis of an image sample in VisDial v0.9. The use of multi-modality
co-reference helps to enhance the correct semantic inference. Two-stage visual
referring between local and global visions are guided by the textual reference
between question and history.

grasping sufficient semantic relationships among multi-round
multi-modality data for accurate answer reasoning is essential.

Early dialog studies addressed multimodal semantic reason-
ing based on the feature fusion of vision and language in a
single-step, which is similar to VQA [18]. The state-of-the-
art approaches focus more on various co-attentions on feature
representations of question Q, history H , and answer A,
yielding many promising results [27]–[29]. These approaches
mostly involve global image-based features. In our paper,
the complementarity between local and global visions pro-
vides richer visual semantics compared with a single type of
visual information. Modeling the mutual contextual correlation
among them is beneficial to perform accurate visual grounding.

In this study, we attempt to comprehensively understand the
image content and capture the latent context relationships in
the question and history more deeply. As illustrated in Fig. 1,
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Fig. 2. Overall framework of textual-visual RAA-Net for visual dialog.

we address the problem of textual-visual semantic correlation
from the following two aspects. First, with respect to the
current question Q: “Is the man old or young?”, the textual
reference process recalls the word “man” in history snippets.
The history sentence “A man in the stance to throw a frisbee.”
corresponds to a high attentive concentration, while the other
two QA pairs with somewhat unrelated textual contents do
not. Second, subsequent to reviewing textual cues, we exploit
the visual reference using a two-step visual reasoning. In the
1st-stage visual reasoning using self-visual reference-aware
attention, both local and global attention maps consistently
focus on the man’s face. The question inference is complicated
and requires more context cues. Then, in the 2nd-stage visual
reasoning using cross-visual reference-aware attention, both
local and global attention maps are expanded to cover the
whole body of the man. These attended visual semantics help
obtain an exact answer.

Fig. 2 illustrates the entire framework in this study. We pro-
pose a Reference-Aware Attention Network (RAA-Net), which
progressively tackles textual and visual references that are
conditioned on the current question. The core idea obeys the
pipeline of the semantic interaction in Fig. 1. To imitate the
way that humans solve question Q, in RAA-Net, we first
explore multi-head textual attention that reviews history H
multiple times under the instruction of Q. Then, we design
two-stage visual attention that re-attends the visual cues of
both local objects and global image under the joint guidance
of Q and H .

Specifically, RAA-Net accomplishes the sentence-level tex-
tual attention and associates the textual semantics of [Q; H ] to
discover the relevant visual cues. In other words, once obtain-
ing the textual co-reference between Q and H , RAA-Net
devotes to visual co-reference learning of different visual
contents in image I , which utilizes both local object-wise
features and global feature maps. Different from that “review-
ing” textual contents multiple times, there are merely two
alternate “glimpses” at image I . The first “glimpse” cap-
tures each intra-visual cues by guided-attention, and the
second “glimpse” explores the inter-visual correlation using

co-attention. These two types of attention mechanisms can
discover subtle visual cues more comprehensively. Finally,
an answer is inferred by a multimodal semantic fusion module.
In a nutshell, RAA-Net enhances the salient semantics in
rich context acquisition by cross-modal correlation learning;
therefore, promising performances can be achieved.

The main contributions are summarized as follows:
• In the proposed RAA-Net, textual-visual semantic reason-

ing is conducted by multimodal reference-aware attention
learning. We gradually capture the question-conditioned
cues from history, global and local visions.

• RAA-Net consists of multi-head textual and two-stage
visual attention modules. The former excels at potential
textual mining between question and history, and the lat-
ter performs well on intra- (self-) and inter- (cross-) visual
references. Both of them are beneficial in identifying the
true attentive semantics within a modality and learning
the visual-linguistic correlations.

• Experimental results on the VisDial v0.9 and
v1.0 datasets show that the proposed approach achieves
promising performance compared to the state-of-the-art
approaches.

The remainder of this paper is organized as follows.
Section II reviews related works. Section III elaborates on
the proposed RAA-Net model. The analysis and discussion
of the experimental results are presented in Section IV, and
conclusions are given in Section V.

II. RELATED WORK

This section reviews studies that are related to three aspects
as follows: visual dialog, attention-based models and dual
visual correlation studies.

A. Visual Dialog

Visual dialog is a new iterative visual-language task, which
is taken as an extension of VQA. Recently, two popular
dialog datasets have been introduced by [23] and [24]. De
Vries et al. [23] have collected a GuessWhat?! dataset via
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a two-player image-guessing game. Given an image and
a caption description, one player asked questions to guess
what objects appeared in the image, while the other player
answered yes/no/NA. However, the questions in the dialog
are closed-ended. Das et al. [24] have released the largest
visual dialog dataset VisDial, which paired two annotators on
Amazon Mechanical Turk to collect more free-form questions
and answers. The open-ended question types include number,
color, weather, etc., and the answer can be yes/no or even a
more elaborate description.

Most of the proposed approaches for visual dialog are based
on encoder-decoder framework, and current encoder-based
studies can be divided into two categories. (1) Fusion-based
models. LF (Late Fusion) [24] encoded the question, dialog
history, and image separately and then concatenated them to
a joint representation for answer inferring. HRE (Hierarchical
Recurrent Network) [24] first used LSTM to encode the joint
feature of question and image, and another LSTM to encode
each QA pair in the dialog history. Finally, dialog-level LSTM
was applied to capture the temporal correlation in the whole
dialog, and the output was used to decode the final answer.
Both the LF and HRE methods are introduced in [24], but
fused the multimodal features at different stages. The former
focused on the joint multimodal feature learning, whereas
the latter adopted a hierarchical recurrent network for history
encoding. (2) Graph-based models. More recently, some
studies have been proposed that are based on various graph
neural networks (GNN). As the special structure of graphs,
these methods are very suitable for reasoning-style tasks.
Zheng et al. [30] have proposed an EM-style GNN, which
constructed the graph on the whole dialog and applied EM
algorithm to infer the answer based on the current question and
QA history. Schwartz et al. [31] have proposed a factor graph
attention mechanism, which constructed the graph overall the
multimodal features and estimated their attention interactions.

B. Attention-Based Model

To further improve performance, various attention mech-
anisms have been widely used in visual dialog. In [27],
Lu et. al. have proposed a novel history-conditioned image
attention model (HCIAE), which attended to image features
according to the dialog context. Wu et al. [28] have introduced
a sequential co-attention model (CoAtt) and trained the model
with the reinforcement learning strategy. Furthermore, there
are some studies that focus on locating the pronouns or nouns
(in languages) with visual objects (in image), which deemed as
the visual reference resolution. Seo et al. [32] have designed
an attention-based memory module named AMEM to store
previous visual attention maps; the current question used the
memory to solve the visual reference issue. Kottur et al. [33]
have imposed the attention mechanism on a set of neural
module networks [34] to handle visual reference resolution
at the word-level.

All works mentioned above focused on visual ref-
erence or multimodal co-attention learning. The visual
dialog is an iterative textual-visual interaction process.
An excellent textual attention mechanism is also essential.

Vaswani et al. [35] have introduced a scaled dot-product
attention mechanism, which calculated the scaled similarity
matrix of the input query with all keys, and applied a
softmax function to obtain the weights on the input values.
On the basis of this attention mechanism, Vaswani et al. have
introduced a transformer framework for machine translation
in the field of natural language processing. Without tradi-
tional CNN and RNN operations, the transformer produced
better performance by parallelism attention computing on the
input sentence. The novel scaled dot-product attention and
multi-head attention in a transformer inspired many studies
[36], [37], which indicates that the transformer method is not
limited to machine translation. Inspired by [35], we design
a multi-head textual attention module to address the textual-
reference problem. Different from the totally textual query,
key, and value in the traditional transformer methods, in our
solution, we propose a multimodal scaled dot-product atten-
tion mechanism as follows. For the textual-reference process,
scaled dot-product attention is first used to attend strongly
related history snippets that are conditioned on the current
question. Then, for the visual-reference process, a variant
of the scaled dot-product attention is implemented to focus
on related visual regions under the guidance of the textual
semantics.

C. Dual Visual Correlation

Different visual representations involving both local object-
based and global image-based visual features have been
introduced for VQA [38], [39]. Both these two works have
co-attended to question, local and global visions. In [38],
a hierarchical co-attention scheme has been proposed; the
local and global visual features were attended respectively,
and they were fused to infer the answer. Lu et al. [39] have
employed a multiplicative embedding scheme to jointly attend
the question-conditioned global image area and local objects.
The method in [39] is most closely related to ours. Lu et al.
have applied a dual visual attention correlation, which is
similar to the visual-reference process in our model. However,
the work [39] was merely performed on original visual features
at once. In contrast, we adopt a progressive attention mecha-
nism to obtain fine-grained visual representations. We design
a two-stage visual attention, in which the 1st-stage is used
to capture respective self-visual cues using guided-attention,
and the 2nd-stage explores the visual cue correlation using
co-attention.

III. PROPOSED METHOD

A. Problem Definition

The visual dialog task [24] is defined as follows: the input
consists of an image I and (t-1)-round dialog-history H =
(c, (q1, a1) , . . . , (qt−1, at−1)), where c is the image caption,
and (q, a) is the previous QA pair. To answer the question
Q at the current round t , the agent can decode in either
of the following two tactics: discriminative and generative
models. Discriminative models select the answer with the
maximum score from a list of N candidate answers At =
{a(1)

t , . . . , a(N)
t }, while generative models decode answers
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by sequential learning. The decoding process of generative
models is optimized by maximizing the log-likelihood of the
ground-truth answer sequence agt

t ∈ At .

B. Method Overview

1) Method Overview: As a vision-language interaction task,
the visual dialog can be divided into three aspects: textual
comprehension of question Q and history H , visual grounding
of image I , and answer inference for question Q. As illus-
trated in Fig. 2, the proposed model RAA-Net includes three
corresponding modules: (1) question-conditioned multi-head
textual attention for textual comprehension in Section III-C,
(2) two-stage visual attention for correlated visual and textual
component association in Section III-D, and (3) multimodal
semantic fusion for answer inference in Section III-E.

In this study, we aim to achieve effective multimodal
semantic understanding of question Q, history H , local vision
Vl , and global vision Vg to inferring the answer A. The
proposed RAA-Net model is a query-adaptive reasoning net-
work. It first explores textual attention, which applies the
question to pick out related history snippet semantics and
output the textual reference-aware representation qht . Next,
it implements visual attention by imposing qht on Vl or Vg to
discover local/global intrinsic visual cues V �

l /V �
g , namely self-

visual reference within each single modality. Then, it performs
a cross-visual reference. The visual cues V �

l and V �
g are

utilized cross-wise to realize mutual visual correlation, i.e.,
(qht + V �

g + Vl) → V ��
l and (qht + V �

l + Vg) → V ��
g . In other

words, RAA-Net first performs textual inferring, and then
independently and mutually addresses local and global visual
correlation inferring.

2) Attention Backbone: To build the reference-aware atten-
tion network RAA-Net, we adopt two types of attention mech-
anisms, i.e., guided-attention and co-attention. The former
measures intra-relationship in a feature sequence X guided by
a query feature Y , while the latter integrates inter-relationship
among multiple features, e.g., (X, X1, X2, · · · , Xn).

Guided-attention: We apply this attention to explore the
interaction in a single feature sequence. Then the relationship
within the feature sequence (i.e., attention distribution) is used
to learn a new embedding of the sequence. Motivated by scaled
dot-product attention [35], in our solution, the guided-attention
is defined as follows. Given a feature sequence X ∈ R

l×d

and a query feature Y ∈ R
1×d , three learnable parameters

W Q , W K , W V ∈ R
d×λ project the inputs to three new feature

sequences: query Y Q ∈ R
1×λ, key X K ∈ R

l×λ, and value
X V ∈ R

l×λ, where l is the length of the input sequence X .
The attention function is performed as shown in Eq. (1). Let
Attguide ∈ R

1×l be the output of the attention, which is the
weighted sum of value X V based on the scaled similarity
matrix [ Y Q(X K )T√

λ
]. It handles the new embedding for the

feature sequence X under Y as follows:

Attguide(Y
Q , X K , X V )=so f tmax(

Y Q(X K )T

√
λ

) · X V (1)

where λ is the transformed dimension parameter which is
used to balance the attention distribution, (·)T denotes matrix

transposition, and so f tmax(Y Q(X K )T√
λ

) calculates the intra-

attention weighting distribution of X .
Co-attention: Different from the above mentioned intrinsic

correlation in a feature sequence X , we design a co-attention
to weigh the influences of other feature sequences on X .
The effect of the combination of {X1, X2, · · · , Xn} on X is
formulated as follows:�

μ= tanh((X1W1 + X2W2 + . . . + Xn Wn)�T +XW )

Attco(X, {X1, . . . , Xn})=sof tmax(μWco)
(2)

where W , Wi (i ∈ [1, n]), and Wco are learnable para-
meters that project {X , X1, · · · , Xn} into the same feature
dimension, and �

T ∈ R
l is a vector with all elements set

to 1. Here, we use non-linearity tanh, instead of classical
sigmod , to compute μ, where tanh squashes the input to the
range of [-1, 1]; μWco is later applied to sof tmax with the
range of (0, 1). Compared with sigmoid �, tanh� has larger
gradient range results, which results in faster convergence
and better inhibition of gradient vanishing [40]. Moreover,
tanh ∈ [−1, 1] is zero-symmetric, while sigmod ∈ (0, 1).
If the inputting data is always greater than zero, this will
lead to the offset phenomenon. Considering these factors,
we choose tanh for computing μ.

C. Textual Reference-Aware Attention

Visual dialog refers to a multi-round conversation about
the image. Questions in a dialog always contain at least
one pronoun (e.g., “he”, “she”, “it”, and “this”). The latent
semantic co-reference between question Q and history H is
still a challenge to be solved. In our framework, we propose
multi-head textual attention for utilizing Q and H , which is
an extended guided-attention to address textual inferring.

1) Transformed Textual Embedding: Prior to the textual
reference process, we obtain sentence-level features of Q and
H using respective LSTM [41]; we denote them as LST MQ

and LST MH . Each word xi in the sentence is assigned to a
one-hot vector and modeled by a learnable word embedding
matrix We. As for question Q, we take the last hidden state
LST MQ (xL We) as the question feature qt , where L is the
number of words in question Q. We adopt LST MH to encode
the history feature H = [h0, h1, . . . , ht−1] in the same way as
that of Q, where each QA pair is taken as a whole sentence
and h0 denotes the textual feature of image caption c. Here,
H ∈ R

t×dt , where dt is the dimension of these textual features.
In this study, we aim to track the context feedback from

a sequence {caption c and each QA pair} in H under the
guidance of question Q. It is advantageous to adopt the
guided-attention in Eq. (1). Thus, we transform original textual
features into new features query q Q , key H K , and value H V

as follows: ⎧⎪⎨
⎪⎩

q Q = Linear(qt; W Q)

H K = Linear(H ; W K )

H V = Linear(H ; W V )

(3)

where W Q , W K and W V are learnable parameters and
Linear(·) denotes a fully connected layer.
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2) Multi-Head Textual Attention: Up to now, we have
obtained new query semantics of question Q (query q Q),
to-be-attended embedding (key H K ) and new projection (value
H V ) of history H . The operation q Q(H K )T reflects the atten-
tion distribution of H under Q. With the input {q Q, H K , H V },
we use the guided-attention to extract relevant textual seman-
tics from the dialog history.

Textual semantic reasoning in natural languages is usually
complicated. The use of only a single-step guided-attention
to a multi-round conversation may be insufficient. Thus,
we design a multi-head guided-attention, which imitates the
process that humans use to review the conversational inter-
action multiple times. The inputs of the multi-head attention
module are q Q , H K , and H V . At head h, the attention is
defined as Ah = Attguide(q Q, H K , H V )|h ∈ R

1×t by Eq. (1).
Thus, the textual reference scheme Re fT :Q↔H is calculated
as follows:

Re fT :Q↔H :
zt = Linear

�
Multihead(q Q, H K , H V ); W z

�
= Linear

�	
Attguide(q

Q, H K , H V )|head=1, · · ·
Attguide(q

Q, H K , H V )|head=h

; W z

�
= Linear

�	
A1 ⊕ A2 ⊕ . . . ⊕ Ah


; W z
�

(4)

where h is the number of heads, and ⊕ is the concatenation
operation.

Currently, zt denotes the question-conditioned textual
semantics of H by the multi-head attention. In addition,
we add zt with the average pooling of H . Avg_Pool(H ) can
be regarded as a complement of zt . zt is a local, fine-grained,
historical relevance calculation, whereas Avg_Pool(H ) con-
siders the original global historical semantics. The joint
exploitation of Avg_Pool(H ) and zt is proposed to learn
textual semantics much more comprehensively. After the
two layer normalization [42] and one feed-forward net-
work, we obtain a question-conditioned history feature ĥt as
follows: ⎧⎪⎪⎨

⎪⎪⎩
ẑt = Layer Norm(zt + Avg_Pool(H ))

ht = Linear
�

ReLU(ẑt W z
1 ); W z

2

�
ĥt = Layer Norm(ht + ẑt )

(5)

where W z
1 and W z

2 are learnable parameters.
We concatenate the question feature qt and the new

history feature ĥt to generate the textual reference-aware
vector qht .

qht =[qt ⊕ ĥt ] (6)

D. Visual Reference-Aware Attention

Subsequent to textual reference, we conduct two-stage
visual reference. As illustrated in Fig. 2, the proposed
RAA-Net includes both intra- and inter- visual inferring, i.e.,
respective self-attention of local and global visual features,
and cross-reference (co-attention) between them.

1) Transformed Visual Embedding: Here, we use both local
object-based and global image-based visual features to achieve
comprehensive visual inferring. Faster R-CNN [21], [43] pre-
trained on Visual Genome dataset [44] is applied to to extract
local object-based features Vl ∈ R

36×2048, where 36 is the
number of detected objects for each image, and 2048 is the
dimension of local visual features. Besides, we adopt a pre-
trained model VGG19 [45] to extract global visual features.
The output of the last pooling layer of VGG19 is denoted as
Vg ∈ R

7×7×512, where 7 × 7 is the spatial size and 512 is the
channel number of the feature maps.

To perform better self-visual reasoning, we adopt the same
function of transformed embedding in Eq. 3, which targets to
obtain more effective representations (query, key and value).
The difference is that here it is a multimodal transformed
embedding. We use the textual reference-aware vector qht

to build query, which remains the joint textual co-reference
semantics from Q and H . For either visual features Vl or Vg ,
we transform them into respective new embedding of key and
value. The original qht , Vg , and Vl are mapped into each new
embedding space as follows:⎧⎪⎨
⎪⎩

q Q
l = Linear(qht; W Qql )

V K
l = Linear(Vl; W KVl )

V V
l = Linear(Vl; W VVl )

⎧⎪⎨
⎪⎩

q Q
g = Linear(qht; W Qqg )

V K
g = Linear(Vg; W KVg )

V V
g = Linear(Vg; W VVg )

(7)

where q Q
l|g ∈ R

1×d , V K |V
g ∈ R

M×d , V K |V
l ∈ R

K×d , K = 36,

and M =7×7. {W Qql , W KVl , W VVl } and {W Qqg , W KVg , W VVg }
are all learnable parameters.

2) 1st-Stage Visual Attention (Self-visual Reference): This
stage targets to identify the most related visual cues within
each data space. Either based on local or global visual features,
we implement the guided-attention under the textual reference-
aware semantics qht . In other words, this stage implements the
reference (qht + Vl) → V �

l and (qht + Vg) → V �
g , where V �

l
and V �

g denote the intra- local and global visual cues.
Taking local visual features as an example, given the textual

query q Q
l , visual key and value (V K

l and V V
l ), Vl

� is obtained
by weighted summation over all feature vectors in V V

l with
respect to q Q

l and V K
l . Similarly, we calculate the intra-global

visual cue Vg
� in the same way. Thus, we perform the visual

grounding of related objects and salient relevant regions in
their self-visual view, respectively. Essentially, it is a self-
visual reference process.

Step 1: Re fVl
�:Vl↔Vl |Q H :

Vl
� = Attguide(q

Q
l , V K

l , V V
l ) ∈ R

1×d (8)

Step 2: Re fVg
�:Vg↔Vg|Q H :

Vg
� = Attguide(q

Q
g , V K

g , V V
g ) ∈ R

1×d (9)

Notably, we set λ = 1 in Eq. (8) and Eq. (9). The effect
of λ with a high value is to make the calculated attention
distribution more scattered and smooth [35]. λ = 1 without
scaling the attention distribution is suitable to a concentrated
visual attention.
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3) 2nd-stage Visual Attention (Cross-visual Reference):
Different from the previous stage utilizing visual cues in
each visual view (i.e., Vl ↔ Vl , Vg ↔ Vg), this stage
exploits the mutual correlation (i.e., Vl ↔ Vg). As shown
in Fig. 1, the cross-visual reference captures the surrounding
spatial context to realize local-global visual correlation, which
makes the attentive areas of both sides to become more and
more consistent and accurate. We adopt the co-attention to
implement the mutual correlation between Vg and Vl . To be
specific, it implements (qht + V �

g + Vl) → V ��
l for local vision

and (qht +V �
l +Vg) → V ��

g for global vision, where V ��
l and V ��

g
denote the outputs of local and global reference-aware visual
cues. V ��

l and V ��
g are performed as follows:

Step 3: Re fVl
��:Vl↔Vg|Q H :�

αl= Attco

�
Vl , {V �

g, qht }
�

∈ R
1×K

V ��
l =αl Vl

(10)

Step 4: Re fVg
��:Vl↔Vg|Q H :�

αg= Attco

�
Vg, {V �

l , qht }
�

∈ R
1×M

V ��
g =αg Vg

(11)

Up to now, visual reference-aware representations V ��
l and

V ��
g have already be explored under the guidance of the

textual-aware semantics qht . As the Hadamard product �
(i.e., element-wise multiplication) has been confirmed to
be effective at enhancing the textual-visual correlation in
VQA [46], here we use it to refine the visual features.�

Ṽl = Vl
�� � f (qht ) ∈ R

1×d

Ṽg = Vg
�� � f (qht) ∈ R

1×d (12)

where f (·) denotes a non-linear transformation function as
follows:

f (x) = tanh(xW f 1) � σ(xW f 2) (13)

where W f 1 and W f 2 are learnable parameters.

E. Multimodal Semantic Fusion

Finally, we perform a joint semantic embedding et , which
fuses the above mentioned reference-aware features including
the textual feature qht , the local and global visual features
Ṽl and Ṽg .

et = tanh
�

Linear
�[qht ⊕ Ṽl ⊕ Ṽg]; W f �� (14)

where W f ∈ R
4d×d is a learnable parameter. As for the

subsequent decoding setting, we obey the rule in [24]. In the
generative model, et is fed into a LSTM-based decoder to infer
the answer â; in the discriminative model, et is input into the
softmax decoder to sort the candidate answers At . The training
details are in Section IV-A.3.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: The experiments are conducted on the VisDial
v0.9 and v1.0 datasets [24]. VisDial v0.9 is collected through a
two-player image-guessing game that is based on COCO [47]

images. For each image example, the dialog consists of
10-round QA pairs. VisDial v0.9 contains 83k and 40k dialogs
on COCO-train and COCO-val images, respectively, with a
total of 1.2M QA pairs. VisDial v1.0 is an extension of VisDial
v0.9, which adds additional 10k dialogs on Flickr images. The
new train, validation, and test splits have 123k, 2k, and 8k
dialogs, respectively. It is worth noting that in the test split of
VisDial v1.0, each dialog has flexible m rounds of QA pairs,
where m is in the range of 1 to 10.

2) Evaluation Metrics: Following [24], the answer accuracy
is evaluated by retrieving the ground-truth answer from a
list of 100 option answers. We adopt the following retrieval
metrics: (1) average rank of the ground-truth answer (Mean),
(2) recall rate of the ground-truth answer in top-k ranked
option answers (R@k), and (3) mean reciprocal rank of the
ground-truth answer (MRR). In addition, VisDial v1.0 intro-
duces an additional retrieval metric normalized discounted
cumulative gain (NDCG), which penalizes the lower rank of
answers with high relevance.

3) Implementation Details: We build the vocabulary con-
taining the words occurring at least five times in the train-
ing split. The lengths of captions, questions, and answers
are truncated to 40/20/20 for discriminative models, and to
24/16/8 for generative models, respectively. Words in all
captions, questions, and answers are embedded into 300-dim
vectors by the GloVe embedding [48]. For the local visual
feature extraction, we adopt the implementation of object
detection using Faster R-CNN for VQA [24], [46], including
choosing K = 36 detected objects. In addition, in Eqs. 1∼14,
except for the parameterless activation functions softmax,
tanh, ReLU, and Avg_Pool (mean pooling), only the Linear
(i.e., FC, the fully connected layer) remains. There are many
FC operations, as our task is a cross-modality problem. FC is
used as a conventional projection operation to project different
features (textual and visual semantics) into a much more close
embedding space, promising better correlation learning and
relation reasoning.

In our implementation, the Adam optimizer [49] is initial-
ized with the learning rate of 4 × 10−4 and multiplied by
0.5 after every 10 epochs. There are three LSTM modules.
We denoted them as LST MQ , LST MH , and LST MA , which
extract the features of question Q, history H , and answer
A, respectively. They are independently initialized and trained
without sharing parameters. All of LSTMs are set with 1-layer
and 512 hidden states. We set the dropout [50] ratio to 0.1 for
all attention modules and to 0.5 for the multimodal semantic
fusion module. Finally, the generative model is trained with
the MLE (Maximum Likelihood Estimation) loss, while the
discriminative model is trained with a multi-class N-pair
loss [27].

B. Ablation Study of RAA-Net

1) Multi-Head Settings in Textual Reference: We conduct
ablative experiments on the validation set of VisDial v0.9.
At first, we test different settings of multi-head textual atten-
tion. We set the dimension of the textual reference-aware
vector to be 512 and test the influence of the head number h
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TABLE I

ABLATION STUDY OF DISCRIMINATIVE MODELS WITH DIFFERENT
MULTI-HEAD SETTINGS ON VISDIAL VAL V0.9

TABLE II

ABLATION STUDY OF DISCRIMINATIVE MODELS WITH DIFFERENT
TEXTUAL FEATURES ON VISDIAL VAL V0.9

under h = 1, 2, 4, and 8. With the same dimension d � = 512,
the dimension of each head is divided as dh = d �/h, i.e.,
512, 256, 128, and 64 respectively. As shown in Table I,
when the number of heads is h = 4, our model gets better
performance. We deem each head attention imitating human
to review the textual reference at one time. The experimental
results show that “reviewing” too many times may disturb the
correct reference process, while reviewing fewer times may
miss some important textual cues. And h = 4 is practical for
the task. Then, we test the head dimension dh . We set the same
head number h = 4 and test different dh = 128, 256, and 512.
RAA-Net achieves the best performance with dh = 256. Thus,
we set h = 4 and dh = 256 in the following experiments.
Table I shows that the performance of RAA-Net at different
settings is very similar. This result confirms that RAA-Net has
good robustness on the multi-head textual attention.

2) Textual Features: Here, we validate different textual
features in the textual reference process. We experiment with
RAA-Bert and RAA w/o Avg(H ). RAA-Bert is a variant of
RAA-Net, which merely replaces the original sentence-level
LSTM features by the mean pooling in the word embedding
features extracted by a pre-trained BERT [51]. RAA w/o
Avg(H ) is a variant of RAA-Net that adopts only zt to obtain
the question-conditioned history features ĥt (i.e., ĥt = zt ).
As shown in the following Table II, RAA-Bert has a
noticeable performance drop. There are different usages of
the self-attention. The self-attention in BERT [51] explores
the word-level relationship for textual embedding, whereas the
self-attention in our solution emphasizes correlation learning
of multiple multimodal features at sentence level. In addition,
compared with RAA w/o Avg(H ), RAA-Net has a slight per-
formance improvement. It indicates that zt contributes to the
primary historical influence. Owing to the better performance
of RAA-Net, we retain Avg(H ) in the proposed RAA-Net.

3) Variants of RAA-Net: To verify each component in
RAA-Net, we propose few variants for ablation study:

TABLE III

ABLATION STUDY OF DISCRIMINATIVE MODELS ON VISDIAL VAL V0.9

• RAA w/o Vl denotes the variant of RAA-Net with only
global visual feature Vg and textual feature qht .

• RAA w/o Vg denotes the variant of RAA-Net with only
local visual feature Vl and textual feature qht .

• RAA w/o T-att means that under local and global visual
feature (Vl and Vg), RAA-Net removes the multi-head
textual attention. Instead, the average pooling for history
features is calculated as ĥt .

• RAA w/o V-self-att denotes the variant of RAA-Net with
only the 2nd-stage cross-visual attention. Without taking
an early look at intrinsic cues in each visual modality with
self-attention in respective Vg or Vl , RAA w/o V-self-att
directly implements the mutual visual correlation.

• RAA w/o T-V-self-att denotes the variant of RAA-Net
without “T-att” and “V-self-att” modules.

• RAA w/o V-cross-att denotes the variant of RAA-Net
with only the 1st-stage self-visual attention. This means
that the model removes the cross-visual correlation.

As shown in Table III, RAA w/o Vl has the largest per-
formance degradation, which verifies the contribution of Vl .
Compared with RAA w/o Vl , RAA w/o Vg improves MRR
from 0.6316 to 0.6574. For this visual dialog task, local visual
features (bottom-up features [21]) perform better than global
visual features (VGG features). It could be that bottom-up
(object-based) features can provide more fine-grained local
spatial cues for visual reference. With respect to the two-stage
visual-reference, the performance of RAA w/o V-self-att
on metric Mean is around 3% lower than RAA-Net. The
self-attention in each visual data space (Vg or Vl ) com-
prises more comprehensive and detailed visual semantics
for inferring exact answer. Compared with RAA-Net, RAA
w/o V-cross-att considerably decreases MRR from 0.6683 to
0.6404, which reflects the necessity of cross-attention in our
approach. Visualization examples in Figs. 3∼5 validate the
effectiveness of RAA-Net too.

For textual reference, compared with RAA w/o T-att,
the R@1 value of RAA w/o T-att decreases from 53.80 to
52.92 and the Mean value increases from 3.89 to 4.02. Review-
ing history indeed benefits to discover latent and missing
textual hints. Moreover, we test RAA w/o T-V-self-att, and
its performance considerably decreases compared with RAA
w/o T-att or V-self-att. It indicates that the single absence of
“T-att” or “V-self-att” does not lead to a drastic performance
drop, but the joint absence does.

Furthermore, there are some interesting observations.
(1) The top-3 worst performances shown in Table I refer to
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Fig. 3. Visualization of textual-visual reference-aware attention in a progressive multi-round dialog. The top layer (attention map) reflects each self-visual
reference under local vision Vl and global vision Vg , while the middle-layer (attention map) describes the cross-visual reference between Vl and Vg . The
bottom blue layer (i.e., attention histogram) denotes the average textual attention weights of {h = 4} multi-head attentions over the history. The following
abbreviations are used: question (Q), generated answer (A), caption (c), and the ground-truth (GT ).

Fig. 4. Qualitative results of textual reference. Without the textual reference between Q and H , the agent prefers to attend to long sentences, e.g., the caption
that seems to contain more semantics, which makes the referential entities of the pronoun (“he” and “it”) in the questions to be inaccurate. The weighting
histogram denotes the average textual attention weights of {h} multi-head attention over the history. This result indicates that RAA-Net can modify wrong
attentive textual semantics by the co-reference between Q and H .

RAA w/o Vl , RAA w/o V-cross-att, and RAA w/o Vg . All
of them have a commonality, i.e., the cross-visual attention
module is absent. This result confirms the importance of cross-
visual reference again. (2) RAA w/o V-cross-att performs
worse than RAA w/o Vg . It indicates that although Vg is
a complement of Vl , if without correlation (cross-attention)
between Vl and Vg , Vg may introduce noise and dominate
visual reference. (3) As shown in Fig. 2, the 1st visual
attention (the “V-self-att” module) is performed subsequent to
the textual attention (the “T-att” module). If “T-att” is removed,
the effect of “V-self-att” would be weakened. It is verified
in Table III, the negative influence of RAA w/o T-att is more
than that of w/o V-self-att.

C. Comparison With the State-of-the-Art Methods

1) Baselines: We compare RAA-Net with the state-of-the-
art methods in both generative and discriminative settings.
The differences between RAA-Net and other methods are

discussed as follows. In [24], three baseline methods LF,
HRE, and MN are introduced. Among them, LF directly
fuses multimodal features to a joint representation to decode
the answer. HRE uses hierarchical recurrent LSTMs [52] to
separately encode the question, image, and history; finally,
it adopts another LSTM to capture the temporal correlation
in the entire dialog. MN mainly designs a memory bank to
store previous dialog history. HCIAE [27] first attends to
dialog history and then uses the attended textual features as
the guidance to attend to the image. CoAtt [28] applies a
sequential pairwise attention correlation learning. AMEM [32]
uses an attention memory network to model the relationship
between the question and dialog history. CorefNMN [33]
relies on a weak supervision parser [53] for visual reasoning.
Recently, graph-based methods have been proposed. GNN [30]
constructs a dialog graph, where nodes are dialog entities and
edges are semantic dependencies between each two nodes; the
answer is regard as unobserved node that can be inferred by
the EM algorithm. FGA [31] constructs the graph overall the
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Fig. 5. Qualitative results of cross-visual attention. With the cross-visual reference, RAA-Net effectively discovers more latent or missing cues. These cues
help the agent to infer more reasonable answers. Besides, RAA-Net prefers longer answers owing to the rich visual semantics, which includes both related
objects and their surrounding spatial context.

TABLE IV

RETRIEVAL PERFORMANCE EVALUATION ON VISDIAL VAL V0.9

multi-modal features and estimates their interactions by factor
graph attention.

2) Results on VisDial v0.9: The discriminative comparison
is shown in Table IV; RAA-Net performs much better than
other methods. Except for the proposed RAA-Net, CorefNMN,
CoAtt, GNN, and FGA are the top-4 best performing meth-
ods. CorefNMN [33] tackles only the visual reference in
global visions. By considering both local and global visions,
RAA-Net considerably outperforms CorefNMN and results
in an increase in MRR from 0.6410 to 0.6683. In CoAtt [28],
a complicated co-attention is implemented by multiple mutual

interactions among the question, history, and global visual fea-
tures. RAA-Net just progressively imposes question semantics
on history and visual features. Compared with the R@1 value
of RAA-Net at 53.80, CoAtt decreases to 50.29. This result
indicates that our progressive textual-visual attention is much
more effective than the complicated mutual attention interac-
tion between every two modalities in CoAtt.

Next, compared with GNN [30], our model improves
the MRR metric by approximately 4%. GNN explores the
graph-based textual reference, while RAA-Net handles mutual
textual-visual reference learning. FGA [31] is the state-of-the-
art graph-based method for visual dialog, which treats the can-
didate answer embedding feature At as new context cue and
introduces it into the multi-modal encoding training. Without
utilizing these candidate answers in the training process, our
model still produces better results, e.g., decreases Mean from
4.35 to 3.89. Regarding the generative model, RAA-Net also
achieves the best performance.

3) Results on VisDial v1.0: We also evaluate RAA-Net on
the VisDial v1.0 dataset. The comparison results are shown
in Table V. Except for FGA [31], RAA-Net has better
performance than other methods. Comparable with FGA, our
model performs better in terms of the Mean and NDCG. It is
worth noting that in VisDial v1.0, there is a new metric,
i.e., NDCG. NDCG is a widely adopted significant indicator,
which involves comprehensive quantitative semantics evalu-
ation. Other metrics are mainly influenced by the rank of
the correct answer in the candidate answer list, while NDCG
measures the semantic similarity of the output answer list.
The NDCG score will be high if more semantically rele-
vant answers appear in the top positions in the answer list.
As shown in Table V, RAA-Net achieves the best NDCG
performance. For example, compared with the latest methods
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TABLE V

RETRIEVAL PERFORMANCE EVALUATION OF DISCRIMINATIVE
MODELS ON VISDIAL TEST-STD V1.0

GNN and FGA, the NDCG performance of our model is
improved by 2.6% and 3.3%, respectively.

D. Qualitative Results

To further demonstrate the interpretability of our solu-
tion, we provide an example in Fig. 3, which progressively
describes the semantic augmentation by both textual and visual
referring in multi-round QA pairs. For the question Q1 “Are
they alone?”, in the 1st self-visual reference stage, global
visual attention is located in a small relevant region (the head
of “a man”), while local attention focuses on some areas that
partially cover “a man” and “a woman.” Then, in the 2nd
cross-visual reference, both local and global attention maps
are modified to highlight the areas covering the body of the
two people. The visualization results indicate the effectiveness
of RAA-Net. For questions Q2 and Q3, visual cues have the
right consistency in both local and global visions. Visual con-
sistency enhances the justification of the semantic reasoning
process. However, in some cases, local and global sights focus
on different regions. Because the object (“sand”) in question
Q4 does not appear in the image, both local and global
attention maps look over different regions and try to provide
a more comprehensive scene parsing. The complementarity
of local and global visions helps the agent to infer a correct
answer.

In addition, we discuss the influence of the textual reference
in the proposed model. The attention maps in Fig. 4 are
obtained with and without the multi-head textual attention
module, corresponding to RAA-Net and RAA w/o T-att.
There are two examples in Fig. 4. It is easy to find that without
the textual reference between Q and H , the referential entities
of the pronoun (“he” and “it”) in the questions are inaccurate.
As shown in Fig. 4 (a), QA pairs in history always talk about
all three people. Without textual inferring, the agent provides
an implicit consent to the same objects (three people) and
infers a wrong answer (i.e., “black”) to question “Q4: What
color hair does he have?”. Fig. 4 (b) shows more obvious
attention differences. RAA w/o T-att focuses on all subjects
in the caption, while RAA-Net mainly attends to the subject
“suitcase” related to question “Q2: Is it large or small?”.
Without a textual reference using multi-head textual attention,
the model prefers to attend to long sentences, e.g., captions
that seem to contain more semantics. However, long sentences
may introduce useless textual semantics or semantic noise.

Fig. 4 shows the visualization of the average textual attention
histogram under multi-heads. The textual attention distribution
indicates that RAA-Net modifies the wrong attentive textual
semantics indicated by the co-reference between Q and H .
In summary, the textual reference-aware process is necessary.

Finally, because the relationship within a single visual fea-
ture sequence (intra-relationship) has been already discussed
in many studies, here, we focus on the discussion of the
influence of inter-attention (cross-attention) among different
feature sequences. As shown in Fig. 5, there are four examples.
In Fig. 5 (a) and (b), the local and global attention maps
are consistent in the relevant regions. For inferring a correct
answer, RAA w/o V-cross-att still concentrates on some spe-
cific objects, whereas RAA-Net expands to consider the more
surrounding spatial context. With respect to the different atten-
tion responses from local and global views in Fig. 5 (c) and (d),
RAA w/o V-cross-att introduces all these original visual cues
into the final multimodal fusion, while RAA-Net remedies
their mutual visual complementarity by cross-visual corre-
lation. Experimental results confirm the effectiveness of the
cross-correlation process in RAA-Net. We can see that after
the cross-correlation operation, both local and global responses
become consistent, which shows the correct answer more
explicitly. In addition, compared with RAA w/o V-cross-att,
RAA-Net tends to generate longer answers owing to the
rich visual semantics, involving both related objects and their
surrounding spatial context.

V. CONCLUSION

In this study, we propose a textual-visual Reference-Aware
Attention Network (RAA-Net) for performing visual dialog
task. It provides a fine-grained understanding of the multi-
modality context. In RAA-Net, we realize the textual-visual
reference through a multi-head textual attention mechanism
and a two-stage visual reference involving both self- and cross-
visual correlation learning. Experimental results on VisDial
v0.9 and v1.0 datasets demonstrate that the proposed model
achieves state-of-the-art performance and shows explainable
visualization results.
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