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Abstract—Sign language translation (SLT) is a challenging
weakly supervised task without word-level annotations. An ef-
fective method of SLT is to leverage multimodal complemen-
tarity and to explore implicit temporal cues. In this work,
we propose a graph-based multimodal sequential embedding
network (MSeqGraph), in which multiple sequential modalities
are densely correlated. Specifically, we build a graph structure
to realize the intra-modal and inter-modal correlations. First, we
design a graph embedding unit (GEU), which embeds a parallel
convolution with channel-wise and temporal-wise learning into
the graph convolution to learn the temporal cues in each modal
sequence and cross-modal complementarity. Then, a hierarchical
GEU stacker with a pooling-based skip connection is proposed.
Unlike the state-of-the-art methods, to obtain a compact and
informative representation of multimodal sequences, the GEU
stacker gradually compresses the channel d with multi-modalities
m rather than the temporal dimension t. Finally, we adopt
the connectionist temporal decoding strategy to explore the
entire video’s temporal transition and translate the sentence.
Extensive experiments on the USTC-CSL and BOSTON-104
datasets demonstrate the effectiveness of the proposed method.

Index Terms—Continuous sign language translation, graph
convolutional network, multimodal sequential embedding, multi-
modal sequential fusion.

I. INTRODUCTION

S IGN language bridges the communication gap between
deaf-mute and non-disabled people. The goal of sign

language translation (SLT) is to convert a video performing
continuous signs into a natural language sentence, which is
a typical vision-to-text task attracting increasing attention in
the research community [1], [2]; it refers to related studies
such as video understanding [3], action recognition [4], and
video captioning [5]. The current development of the SLT
task is limited by some challenges. Complicated and pro-
fessional sign language linguistics is little known except to
linguists. Unlike common video comprehension tasks, subtle
but important action variations are difficult to detect in SLT,
which are often implied in multi-source sign inputs. As shown
in Fig. 1, the multimodal data streams exhibit significant
differences along the time dimension. RGB images describe
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Fig. 1. Continuous SLT with multimodal cues from RGB, depth, and
skeleton data. We aim to utilize multimodal cues to correlate and integrate the
variations of sign actions. Gesture appearances are performed in RGB images,
depth frames distinguish overlapping limbs with depth cues, and skeleton
coordinates reflect skeletal joints’ trajectories.

the fingers’ details, depth images display the edges of limbs
under fast-moving states, and the skeletal coordinates reflect
joints’ motion trajectories. Leveraging multimodal data can
effectively compensate for the deficiencies of each modality.
However, it is challenging to bridge the huge semantic gap
about data consistency among multimodal inputs. Furthermore,
implicit semantic units of signs can be represented at the
frame level, clip level, and video level, resulting in difficulty
in performing multi-scale temporal cue learning. In addition,
weakly supervised sequential learning remains to be solved
without exact word annotation.

Early SLT works were dedicated to exploring the spa-
tiotemporal implications in videos. In such early works,
frame-level features are extracted and fed to a sequential
learning network to model temporal associations [1], [7],
[8]. Then, current feature extraction, referring to methods
adopting three-dimensional convolutional neural networks (3D
CNNs) to learn the spatiotemporal cues simultaneously are
used [9], [10]. To refine the feature representation of videos,
some multi-stream fusion methods are adopted for sign lan-
guage interpretation [11]–[13], such as integrating original
3D CNN features and (2D+1D) CNN features [13] and
score fusion [11]. To further address the weakly supervised
issue in sequential learning, some works have improved
the architecture of neural networks, such as HLSTM [14],
pyramid BiLSTM [15] and the transformer-based model [2].
Pseudo-supervised optimization based on the expectation-
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Fig. 2. Overview of the proposed MSeqGraph framework for SLT. Given a sign video, we use the pretrained ResNet-18 [6] and the proposed skeletal-GCN
model to extract RGB, depth, and skeleton features. These features are then grouped into K clips by sampling t continuous frames; then, each clip (t
continuous frames) with m modalities is fed into the GEU for intra-modal and inter-modal correlations. A hierarchical GEU stacker is applied to deeply
exploit the representation learning of video. After that, each feature map F ∈ Rm×t×d is transformed into a fused vector by an FC layer. Thus, with K
feature maps, we obtain a new feature sequence G = {gk}Kk=1. Finally, we utilize a connectionist temporal decoder to generate a sentence, which assesses
all possible decoding paths along the video’s entire temporal dimension.

maximization algorithm is also used in weakly supervised
learning for SLT [8], [9], [13], [16], [17]. Existing methods
have usually focused on vision-based SLT. Less work has
explored skeletal features. The common method of processing
of skeleton data is to concatenate 3D coordinates into a
vector [18], [19], or to tackle the spatial distribution of joints
as an image and extract pseudo ‘visual’ features [20]. These
methods ignore dynamically modeling the spatial correlation
among joint points. In contrast, we introduce multi-source cues
into SLT and design a Skeleton-GCN network, which builds
a skeleton graph to learn the relation among joints.

Exploring implicit modal cues through fusion and interac-
tion has been promising in improving a variety of multimodal
and cross-modal tasks [21]–[23]. Classical fusion methods are
divided into feature fusion [5], [24], [25] and score fusion [11],
[26], [27]. Recently, to enhance the robustness of multimodal
representation, feature embedding and the joint aggregation of
multi-stream features have been exploited in new tasks such
as multimodal understanding tasks [28]–[30] and cross-modal
reasoning tasks [31]–[33]. The models in these studies belong
to neither feature nor score fusion but a better representation
learning of multimodal cues. Using either isolated or contin-
uous multimodal features, these methods calculate the global
correlation among multimodal features and usually output an
integrated embedding variable to decode, predict, or generate
the tasks’ answers. In this paper, the SLT task is different. We
tackle the multimodal sequential data and output sequential
embedding features. Specifically, we learn the multimodal
sequential data in a gradually aggregated manner. In addition,
the proposed MSeqGraph simultaneously learns inter-modal
complementarity and explores intra-modal spatiotemporal cues
in the sequential learning process. We hope our work inspires
related tasks of multimodal sequential learning.

In this work, we aim to utilize multimodal cues to correlate
and integrate the temporal variations of multiple modalities.

To this end, we propose a graph-based multimodal sequential
embedding network (MSeqGraph) for SLT, as shown in Fig. 2.
Given a sign video with multiple modalities, the pretrained
ResNet-18 [6] is used to extract RGB and depth features. A
joint-based Skeleton-GCN model is proposed for extracting
skeleton features. The above features are fed into a graph
embedding unit (GEU) for parallel temporal-wise and channel-
wise learning and multimodal relational graph embedding. In
addition, we further design a hierarchical stacker that con-
catenates multiple GEUs to capture dense feature embedding.
Through the core concept (i.e., GEU) learning the inter-
modal complementarity and intra-modal spatiotemporal cues
in addition to a common FC layer, we obtain a compact and
informative sequential embedding representation. Finally, we
utilize the CTC optimizer to decode the feature sequence
and translate it into a sentence. The main contributions are
summarized as follows:
• We propose a novel graph-based multimodal sequential

embedding network, MSeqGraph, which designs a GEU
stacker to capture multimodal information and temporal
cues, thereby obtaining compact, complementary, and
informative representation of the video.

• The Skeleton-GCN model is proposed to learn the spatial
characteristics of skeleton joints, where the edge relation
(adjacency matrix) in the joint graph is built according to
body connectivity.

• The GEU consists of channel-wise embedding, tempo-
ral embedding, and multimodal embedding operations
guaranteed by the PCN (temporal-wise convolution and
channel-wise convolution in parallel) and GCN (mul-
timodal graph relational learning). Unlike state-of-the-
art methods compressing the temporal dimension t, we
compact the channel d to aggregate multimodal sequential
representation. A hierarchical GEU stacker is used to
aggregate the densely correlated multimodal representa-
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tions.
• Extensive experiments on two benchmark datasets (i.e.,

USTC-CSL and BOSTON-104) demonstrate the effec-
tiveness of the proposed MSeqGraph. Ablation studies
and qualitative visualizations also verify each component
of MSeqGraph.

The rest of this paper is organized as follows. Section II
reviews the related works. The proposed MSeqGraph model
is elaborated in Section III. Implementation details and experi-
mental results are provided in Section IV. Finally, we conclude
in Section V.

II. RELATED WORK

This section reviews related work on sign language transla-
tion, multimodal fusion, and graph neural networks.

A. Sign Language Translation

The sign language translation (SLT) task [1], [34], [35] was
developed from isolated sign language recognition (SLR) [25],
[36], which mainly involves feature representation and sequen-
tial learning. In early works [37]–[39], hand-crafted features
were utilized for identifying different sign actions. With the
development of deep learning, various deep representations
of sign actions in videos have emerged, such as 2D CNN
features [40], 3D CNN features [12], and optical flow [3].
To address the sequential learning issue in SLR and SLT
tasks, traditional sequential methods, such as hidden Markov
models (HMMs) [7] and dynamic time warping (DTW) [41],
are widely used. Considering the merits of CNNs for feature
extraction and RNNs for sequential learning, hybrid CNN
& RNN models have emerged [8], [11]. The state-of-art
works always extracted clip-level features of each video, i.e.,
compacting T → T

16 , under each modality. In this case, the
complementarity of multi-modality along the timeline was
ignored. In this paper, we devote ourselves to the comple-
mentary and informative representation learning. We embed
the frame-level feature and compact the channel dimension
instead of the temporal dimension to further learn the fine-
grained multimodal temporal cues.

To further address the weakly supervised issue in sequential
learning, some works have utilized different architectures of
neural networks. For example, Guo et al. [14] proposed a
hierarchical-RNN network with visual encoding and word
embedding, which mainly captured visual cues of different
granularities. Li et al. [15] constructed a pyramid BiLSTM
structure to capture key actions by searching the salient re-
sponses. Camgoz et al. [42] combined CNNs and an attention-
based encoder-decoder to translate sign videos into spoken
language, and then they [2] used a transformer-based model
rather than a RNN to bind the two sequence-to-sequence
issues (i.e. recognition and translation) into a unified ar-
chitecture. In addition, weakly supervised learning in SLT
has been researched through pseudo-supervision methods [9],
[16]. Specifically, researchers used a multi-stage translation
framework to obtain pseudo labels, and fine-tuned the feature
extractor, and then alternatively optimized the multi-stage
translation module and the feature extraction module [8], [9].

A typical offline optimization method is named expectation-
maximization (EM), e.g., the usage of EM in Stage-Opt [16]
and CNN-Hybrid [17]. Moreover, in [13], Guo et al. proposed
an online pseudo-supervised learning solution through an end-
to-end connectionist temporal decoding model.

B. Multimodal Embedding & Fusion

Leveraging multimodal cues is quite common in various
artificial intelligence tasks, e.g., cross-modal retrieval [21],
multimodal action recognition [22], and audio-visual speech
enhancement [23]. The classical fusion mechanism is divided
into feature fusion and score fusion. Feature fusion is de-
voted to capturing the correlation among different modali-
ties by concatenation [24] or element-wise summations [43].
Score fusion integrates the score probabilities from different
modalities, rather than modeling cross-modal interaction [26],
[27]. Wang et al. [11] designed a hybrid network containing
TCOV, BGRU, and FL modules to capture local, global,
and mutual patterns of visual features and performed score
fusion. Guo et al. [25] proposed an early-late fusion, which
first concatenated RGB and depth features into a combined
feature and then adaptively selected RGB, depth, and the
combined feature. Furthermore, some SLT methods extract
multi-channel or multi-cue features from single-source original
data for complementary learning. Camgoz et al. [44] modeled
sign videos by incorporating both manual features and non-
manual features, and proposed a multi-channel transformer to
capture inter- and intrachannel contextual relationships. Yin
et al. [45] used a spatial multi-cue module to decompose the
input video into spatial features of multiple visual cues and a
temporal multi-cue module to calculate temporal correlations
at different time steps. To the best of our know, no work has
ever focused on multimodal sequential embedding learning
in the field of SLT. Existing works have usually addressed
multimodal embedding and sequential modeling as two inde-
pendent parts. The convention is that after feature extraction
(independently unimodal), multimodal embedding or fusion is
performed at first (jointly multimodal), and sequential learning
(sentence generation) is then performed. We propose the GEU
module to sequentially learn the multimodal embedding and
fusion (jointly multimodal), which focuses on the fine-grained
multimodal complementarity along the timeline.

Recently, feature embedding and the joint aggregation of
multi-stream features have been exploited to enhance the
robustness of multimodal representation in some new tasks,
such as multimodal understanding tasks [28]–[30] and cross-
modal reasoning tasks [31]–[33]. The models in these studies
belong to neither feature nor score fusion but a better repre-
sentation learning of multimodal cues. Attention-based fusion
has become popular. Yu et al. [46] embedded multimodal
factorized bilinear (MFB) pooling into a novel co-attention
mechanism. Tensor fusion network (TFN) [47] explored an
outer product correlation between different modalities. Low-
rank multimodal fusion (LMF) [48] improved the matrix learn-
ing in TFN by using low-rank vector decomposition, thereby
reducing the number of parameters. Using either isolated or
continuous multimodal features, these methods calculate the
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global correlation among multimodal features and usually
output an integrated embedding variable to decode, predict,
or generate the tasks’ answers.

In this paper, we emphasize complementary learning along
the timeline at the frame level. Therefore, channel embedding,
temporal embedding and multimodal embedding are innova-
tively integrated into the same graph embedding unit, namely
the GEU module. The proposed MSeqGraph simultaneously
learns inter-modal complementarity and explores intra-modal
spatiotemporal cues in the sequential learning process, and
outputs a new feature embedding sequence. We hope our
method will inspire related works of multimodal sequential
learning.

C. Graph Neural Network

Graph neural networks (GNNs) are widely applied to re-
lational learning in various tasks, such as image semantic
segmentation [49], neural machine translation [50] and recom-
mendation systems [51]. GNNs have also effectively addressed
action recognition. Yan et al. [4] constructed the intrabody
edges and interframe edges in consecutive multiple skeleton
frames and utilized GNN to capture both the spatial and
temporal variations of motion in the video. Ye et al. [52]
proposed a dynamical multi-scale GNN that modeled the
relations among body joints for motion-level feature learning.
It is reasonable to apply GNN to model the variation of sign
actions in the SLT task. The existing GNN-based works in SLT
merely model skeletal variations as in the above-mentioned
action recognition and ignore the relational learning of multi-
modalities [53], [54]. A Skeleton-GCN is designed to learn
more robust skeleton representation from the joint coordinates
in our work. We also leverage the GNN-based model to
capture the intra-modal temporal correlations and inter-modal
complementarity among three different modalities of data.

III. PROPOSED METHOD

As depicted in Fig. 2, the overall pipeline of the proposed
approach consists of three steps: feature extraction in Sec. III-
A, multimodal sequential embedding in Sec. III-B, and con-
nectionist temporal decoding in Sec. III-C. Given a video
containing three multimodal data streams with N frames, we
first obtain feature sequences V = {van|Nn=1, v

d
n|Nn=1, v

s
n|Nn=1}

(i.e., RGB feature van, depth feature vdn, and skeleton feature
vsn), and then propose a graph-based multimodal sequential
embedding scheme to aggregate these different multimodal
sequential cues into an integrated feature sequence G =
{gk}Kk=1. Finally, we decode them into a generated sentence
of gloss labels W = {wl}Ll=1.

A. Feature Extraction

For the RGB and depth frames of each video, we use
ResNet-18 [6] to obtain RGB features Va = {van}Nn=1 and
depth features Vd = {vdn}Nn=1. Regarding skeleton data,
considering the spatial distribution of 3D coordinates, we
propose a graph-based Skeleton-GCN model. The skeleton
features Vs = {vsn}Nn=1 are extracted by Skeleton-GCN. Here,
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as an example, it is updated by the messages propagated from its neighbors
(i.e., u1 and u3).

we introduce the design of the spatial graph neural network
for skeleton feature extraction.

As shown in Fig. 3, we select J key joints (i.e., head,
spine, left and right shoulders, left and right elbows, left
and right wrists, left and right hands), where J = 10. We
encode all the joints with 3D coordinates into a frame-level
skeletal representation using a graph neural network. Different
from concatenating all the 3D coordinates as a vector [18],
[19] or tackling the spatial distribution as an image (e.g.,
extracting ‘visual’ features from skeletal distribution images
by CNNs [20]), we learn the skeletal relation using the graph
convolutional network (GCN) [55]. We take the selected joints
as nodes and build an incomplete undirected graph according
to body connectivity. Specifically, if the input joint data of the
n-th frame is denoted as un ∈ RJ×3, the adjacency matrix of
the joints Â ∈ RJ×J is elaborated in Fig. 3. Â describes body
connectivity, and its matrix sparsity reduces the computational
cost in message passing. The update of node ui with neighbors
{uj} is conducted by a GCN operation as follows: λ(ui) : ui → {uj |uiuj ∈ Â};

u′i =
∑

uj∈λ(ui)

1
‖λ(ui)‖σ(Wj→i × uj), (1)

where λ(ui) represents the neighbor set of ui, the term
‖λ(ui)‖ denotes the number of neighbors, and W is a to-be-
learned parameter. The proposed Skeleton-GCN is conducted
by two-layer graph convolution (Eq. 1) and a fully connected
(FC) layer, which is formulated as follows:

Vs = Skeleton−GCN({un}|Nn=1, Â)⇔
u′n = ReLU(GCN(ÂunW

1));

u′′n = ReLU(GCN(Âu′nW
2));

Vs = {vsn}Nn=1 = FC({u′′n}) ∈ RN×d,

(2)

where W1 ∈ R3×12 and W2 ∈ R12×48 are two learnable
parameters, and d = 512.
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B. Multimodal Sequential Embedding

To date, we have extracted independent multimodal feature
sequences, i.e., Va, Vd, and Vs. To obtain a better representa-
tion of the video, we explore the implicit spatiotemporal cues
and the relationship among multi-modalities. To this end, we
propose the MSeqGraph model to explore the spatiotemporal
cues and modal correlation of multimodal sequential features
in a graph stack architecture. We first elaborate on the graph
embedding unit (GEU) in MSeqGraph and then introduce the
hierarchical GEU stack for SLT.

1) Graph Embedding Unit (GEU): As shown in Fig. 2,
the GEU module consists of parallel CNN embedding and
multimodal graph embedding. Based on multimodal feature
sequences Va, Vd, and Vs, we attempt to learn short-term
temporal relations among several adjacent frames. We sample
t continuous frames from m feature sequences, where each
modality feature is fixed to d-dim in Sec. III-A. Thus, we
obtain a clip-level feature map F ∈ Rm×t×d. In our work,
here are m = 3, t = 8, and d = 512. Then, a parallel
CNN operation (PCN ) is designed to model temporal-wise
correlation (PCNT ) and channel-wise learning (PCNC) of
the feature map F ∈ Rm×t×d as follows:

H = PCN(F) ∈ Rm×t×d ⇔
Ftem = PCNT : ReLU(BN(Conv3D(F)))|kernel=(1,3,1);

Fcha = PCNC : ReLU(BN(Conv3D(F)))|kernel=(1,1,3);

H = [Ftm ⊕Fcha],
(3)

where BN denotes the BatchNorm operation and ⊕ is the
element-wise addition. Each vector in feature map F ∈
Rm×t×d is transformed into a new vector in H ∈ Rm×t×d.

Next, we explore the cross-modal correlation. As shown in
Fig. 5, we construct a multimodal graph G, which contains
m× t nodes. Each node is the feature vector in H ∈ Rm×t×d.
Observing Fig. 5, in our work, the intra-modality correlation is
performed with a window ∆T = 5, i.e., the neighboring edges;
the inter-modality correlation is conducted at the same time
step, i.e., the cross-modal edges. Thus, we set the adjacency
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Fig. 5. Intra- and inter- modality correlation in the GEU module.

matrix Ã ∈ R(m·t)×(t·m) as follows:

Ã =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ∈ R(m·t)×(t·m). (4)

Ã contains two types of relations: the intra-modality cor-
relation Aii corresponding to neighboring edges with window
∆T in each modality itself, and the inter-modality correlation
Aij with m = 3 modalities (corresponding to cross-modal
edges at the same time). Both Aii and Aij belong to diagonal
matrices. Aij is an identity matrix, i.e., Aij = It×t ∈ Rt×t.
Aii ∈ Rt×t is a diagonal matrix with ∆T diagonals that is
formulated in Eq. 5. For example, while t = 8 and ∆T = 5,
A11 is given in Fig. 5.

Aii =


a1,1 · · · a1,d∆T

2 e 0 0 0

a2,1 a2,2 · · · a2,d∆T
2 e+1 0 0

0 0 · · · · · · · · · · · ·

0 0 0 at,t−b∆T
2 c · · · at,t


t×t

(5)
After modeling Ã, we adopt the GCN operation to update

intra-modal and inter-modal relations among nodes. Based on
the input feature map F ∈ Rm×t×d, the graph embedding
process is formulated to learn the node representation as
follows:

H′ = GEU(F , Ã) ∈ Rm×t×
d
2 ⇔{

H = PCN(F);

H′ = ReLU(GCN(ÃHWg)),

(6)

where Wg ∈ Rd× d
2 is a to-be-learned parameter. Thus, F ∈

Rm×t×d is transformed into H′ ∈ Rm×t× d
2 , strengthening the

modal complementarity and temporal correlation.
2) A Hierarchical GEU Stacker: Motivated by the fact that

a deeper neural network improves model performance by in-
hibiting the network degradation [6], we design a hierarchical
GEU stacker. The stacking details are depicted in Figs. 2
and 8. We set the three-layer GEU stack. In addition, there
are two stacking modes in each GEU module, as shown in
Fig. 6; we select the second mode, i.e., embedding the skip
connections operation into the GEU stacker. We also discuss
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the performances of these two modes in Sec. IV-B. Here, we
rewrite the complete GEU stacker calculation in the proposed
MSeqGraph as follows:

g = HGEU(F , Ã)⇔ Hb =

{
PCN(F), b = 0;

Pool(Hb−1) +GEU(Hb−1), 1 < b ≤ B;

g = FC(HB) ∈ R1× d

2B
,

(7)

where B is the height of the stacker.
To summarize, the hierarchical GEU stacker is designed

to explore the short-term temporal cues in videos. For each
video, we stack every 8 frames with 4-frame overlap to group
K clips. Here, K = bN/4− 1c, where N is the frame number
of a video. The feature map of each clip F ∈ Rm×t×d is fed
into the GEU stacker, and a fused feature vector g ∈ R1× d

2B

is output. Thus, we obtain a new embedding sequence of a
video G = {gk}Kk=1 through the GEU stacker.

C. Connectionist Temporal Decoding

In the decoding phase, the bidirectional GRU network
(BGRU) and CTC model [56] are combined to jointly decode
sentences. The BGRU-based CTC decoder used here includes
a two-stage decoding and translation process. We use BGRU
to realize sequential (temporal) learning, and CTC is adopted
as the objective function to decode sentences. Specifically, we
first explore longer-range temporal transitions across the entire
video. The GEU stacker outputs are fed into the BGRU and
the FC layer to map sequential features into a word vocabulary
V oc.

P = {pk}Kk=1 = ϕsoftmax[FC({BGRU(gk)}Kk=1)] (8)

where P = {pk}Kk=1 ∈ RK×|V oc| is a score matrix and |V oc|
is the size of V oc. We denote V oc as a set of all the words
in the training set and add a blank word ‘ ’ to it.

The CTC optimizer applies a many-to-one mapping opera-
tion B, as shown in Fig. 7, which merges the repetitions and
deletes the blank words in path π, e.g., B(π) = B ( H H E L

L O) = ( H E L L O)= {HELLO}. π is converted
into a variable sentence Y = {HELLO}. Therefore, actually,
the probability of a labeling Y = (y1, y2, ..., yL) containing L

- E L - L - OHH- -

BGRU+FC: features to word sequence

L OLEH

CTC: word sequence to sentence

- H H - E L - L - - O

H E L - L - O

H E L L O

Hello!

–
H
–
E
–
L
–
L
–
O
–

t =1 2 3 4 5 6 7 8 9 10 11

- H H - E L - L - - O

all the possible paths {π} many-to-one mapping

Fig. 7. Illustration of connectionist temporal decoding. In the training process,
the CTC optimizer calculates all the possible paths {π}. During the testing
process, we pick up the path with the maximum probability score, e.g., the
red path in this figure, and apply many-to-one mapping decoding to statically
generate a result. Note that to simplify this process, we show character-level
decoding as our example; in reality, however, the decoding is conducted at the
word level. In other words, the letters ’H,’ ’E,’ etc., are changed to different
words in our work.

words is the probability sum of all the possible {π} with K
probabilities pk as follows:

Pr(Y|pk) =
∑

πk∈B−1(Y)

Pr(πk|pk) (9)

where B−1(Y) = {π|B(π) = Y} involves all the possible
paths {π}. The probability of a path π is defined as follows.

Pr(π|pk) =

K∏
k=1

Pr(πk|pk),∀πk,j ∈ V oc′ (10)

where πk is the kth element of π.
CTC optimization is regarded as maximizing the probability

of all alignments; thus, the loss function is formulated as
follows:

L =
∑

π∈B−1(W)

−logPπ = −
∑

π∈B−1(W)

K∑
k=1

pπk . (11)

In the test decoding, we obtain the probability score P =
{pk}Kk=1. Next, we use the argmax function on pk and output
the ith word classification label with the maximum value.
Finally, we have to merge the reduplicate words and delete
the blank ‘ ’ by the above-mentioned many-to-one mapping
B, and output the final generated sentence.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset: We evaluated the proposed MSeqGraph model
on two benchmarks: USTC-CSL [12] and BOSTON-104 [57].
As shown in detail in Table I and Fig. 9, USTC-CSL is a
Chinese sign language dataset that covers 100 daily sentences
played by 50 signers. Referring to [10], we adopt two strate-
gies, Split I and Split II, to split the dataset into training and
testing sets. Split I is designed for the signer independent test,
in which the sentences of training and testing sets are the
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Fig. 8. Implementation details of the proposed MSeqGraph for multimodal sequential embedding. Given an input (clip-level feature map) F ∈ Rm·t·d, in
each graph block (Graph Embedding Uint, GEU), PCN is designed for temporal-wise and channel-wise learning in parallel and GCN blends multimodal
complementarity. Pooling-based skip connections linearly stack nonlinear GEUs. Different from the state-of-art models [15], [35] compacting temporal cues
(transforming several frames into a clip, i.e., t → t

16
), in this paper, we densely compact the channels to obtain F ′ ∈ Rm·t· d

16 , where the dimension reduction
of feature maps is the same.

TABLE I
DETAILS OF BENCHMARK DATASETS

Split Strategies Signers Sentences Videos Vocabulary
USTC-CSL

Split I Train 40 100 4000 178
Test 10 100 1000 178

Split II Train 50 94 4700 178
Test 50 6 300 20

BOSTON-104
Train 3 122 161 103
Test 3 35 40 65

same but played by different signers; Split II evaluates the
unseen sentence translation test, in which each word in the
testing set exists in the training set, but the order of occur-
rence and the usage are completely different. BOSTON-104
contains 201 sentences of American sign language, referring
to a vocabulary of 104 words. In BOSTON-104, 26% of the
vocabulary words occur only once in the training corpus. It is
noteworthy that our method focuses on solving the multimodal
sequential embedding in SLT and translates sentences. Thus,
the famous RGB-based single-modal datasets PHOENIX14 [7]
and PHOENIX14T [42] are not considered.

2) Evaluation Metrics: WER (word error rate) [7] is used to
measure the similarity of two sentences, which is calculated
as WER = DEL+INS+SUB

num words , where num words stands for the
number of words in the ground-truth, and DEL, INS, SUB
denote the numbers of deletions, insertions and replacements
with the minimum total operations during the transformation
of the generated sentence into the ground-truth. Precision is
the ratio of correct sentences to all the sentences. Acc-w is
the average ratio of correct words in each generated sentence
to the corresponding ground-truth. In addition, we adopt the
semantic metrics used in the fields of NLP [58], NMT [59]
and image captioning [60], such as CIDEr, BLEU, ROUGE-L

(a) An video example of USTC-CSL with RGB images, depth frames and skeletal data

(b) An video example of BOSTON-104 with black-and-white images

Fig. 9. Video examples of (a) USTC-CSL and (b) BOSTON-104. The skeleton
data of USTC-CSL is captured by Kinect V2.0. In BOSTON-104, black-and-
white images are annotated with positions of hands and face.

and METEOR.

3) Implementation Details: For feature extraction of RGB
and depth images, we adopt a pretrained ResNet-18 on Im-
ageNet [61], where the images are cropped with a size of
224 × 224, and output through the average pooling layer
after conv5 x of ResNet-18, where the feature dimension is
set to 512. For skeleton data in the USTC-CSL dataset, we
select 10 key joints (i.e. head, spine, left and right shoulders,
left and right elbows, left and right wrists, left and right
hands) with three-dimensional coordinates collected by Kinect
V2.0. For dataset BOSTON-104, as shown in Fig. 9 (b), 2D-
dim positions (x,y) of hands and face are leveraged. Using
the proposed Skeleton-GCN model, we obtain the respective
512-dim skeleton feature sequence for the USTC-CSL and
BOSTON-104 datasets. Note that for the data stream of
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TABLE II
EVALUATION OF DIFFERENT MODALITY SETTINGS

Features WER(%)↓ CIDEr↑ BLEU-1↑ ROUGE-L↑ METEOR↑
Experimental Results on Split I

RGB 17.9 7.364 0.848 0.853 0.537
Depth 14.8 6.788 0.852 0.879 0.512

Skeleton-concat 12.7 7.413 0.907 0.907 0.559
Skeleton-MLP 11.0 7.650 0.897 0.908 0.566
Skeleton-GCN 8.5 8.520 0.938 0.938 0.630

RGB+Depth+Skeleton-GCN 6.3 9.020 0.942 0.958 0.653

Experimental Results on Split II
RGB 63.3 0.503 0.472 0.479 0.182
Depth 61.5 0.571 0.411 0.444 0.158

Skeleton–concat 62.5 0.604 0.466 0.469 0.196
Skeleton-MLP 61.7 0.504 0.474 0.468 0.183
Skeleton-GCN 59.5 0.627 0.493 0.485 0.201

RGB+Depth+Skeleton-GCN 59.1 0.705 0.467 0.498 0.201
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Fig. 10. Visualization of word-level classification accuracy of a USTC-CSL
video example. The X-axis represents the time step, and the Y-axis stands for
word labels, where label #0 denotes the ‘blank’ action.

videos, we sequentially sample every eight features with four-
frame overlap as clip units and feed them into the proposed
MSeqGraph. The detailed modules of the proposed MSe-
qGraph are shown in Fig. 8. In addition, we apply batch
normalization [62] after each convolutional layer, and BGRU
with 2×1024−dim hidden states for CTC decoding. We adopt
the ADAM [63] optimizer and set the batch size to 20. The
learning rate is initially set to 1×10−4 and then set to 1×10−5

after 20 epochs. The model finally achieves the convergence
after approximately 60 epochs of training. Experiments are
performed with PyTorch on NVIDIA GeForce GTX 1080 Ti
GPU.

B. Ablation Studies

1) Experiments with Multimodal Cues: As shown in Ta-
ble II, skeleton features perform more robust WER than

TABLE III
EVALUATION OF THE GRAPH EMBEDDING UNIT

Structures WER(%)↓ CIDEr↑ BLEU-1↑ ROUGE-L↑ METEOR↑
Experimental Results on Split I

GEU w/o C 4.6 9.048 0.963 0.966 0.678
GEU w/o T 4.5 9.096 0.960 0.966 0.678
GEU w/o G 5.3 8.890 0.956 0.959 0.672
GEU w/o Skip 4.4 8.832 0.959 0.966 0.662
w/o GEU 6.3 9.020 0.942 0.958 0.653
Intact GEU 0.6 9.666 0.995 0.995 0.810

Experimental Results on Split II
GEU w/o C 60.3 0.479 0.451 0.430 0.172
GEU w/o T 56.8 0.628 0.480 0.490 0.200
GEU w/o G 60.9 0.584 0.468 0.480 0.176
GEU w/o Skip 57.5 0.672 0.436 0.488 0.174
w/o GEU 59.1 0.705 0.467 0.498 0.201
Intact GEU 49.9 1.061 0.531 0.566 0.234

RGB and depth features. The experimental results for the
CIDEr, BLEU-1, ROUGE-L and METEOR metrics also verify
this conclusion. This indicates that learning visual cues is
more difficult than learning skeletal data for sign language
recognition. In addition, there is an interesting phenomenon
in which visual features of depth images perform better on
WER but worse on the other semantic metrics than RGB
features. For example, the CIDEr of depth features on Split II
increases more than 10% compared with RGB features. Note
that WER indicates the incorrectly identified words, whereas
CIDEr, BLEU-1, ROUGE-L and METEOR demonstrate the
semantic measurement. This reflects that RGB features can
identify synonyms but have difficulty to solve the only correct
one; skeleton and depth data seem to be more powerful at
distinguishing the correct words. For skeletal data, to verify the
proposed Skeleton-GCN module, we compare with the method
concatenating 3D coordinates as a vector, denoted as Skeleton-
concat. The WERs of Skeleton-GCN are 4.2 / 3.0 better than
Skeleton-concat on Split I and Split II. We further set a variant
of Skeleton-GCN - Skeleton-MLP, which implements MLP
on the body joints’ coordinate data rather than graph modeling.
Compared with other single-modal methods, Skeleton-GCN
achieves the best performance, and its BLEU-1 and METEOR
on Split II have even caught up or surpassed the respective
values for the multimodal method. These results indicate
that GCN further strengthens the performance advantages of
skeleton features, especially in semantic similarity evaluation.

In addition, we visualize the alignment of the respective
feature sequence and words of a video sample in Fig. 10,
where the red line records the ground-truth. It is observed
that both RGB and depth features obviously miss a matching
at time steps 41∼49. RGB performs the worst at time steps
75∼93. Skeleton data perform well most of the time except for
an obvious missing at steps 17∼27. Regardless, the combina-
tion of all the modality data performs the best. In Fig. 10(d),
although there are several skipping frames, they do not affect
the generated words through the greedy merging statically in
the CTC decoding path. More qualitative results are given in
Fig. 11. The combination of all the modality data improves
the sentence prediction.
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Video Sample 1

Depth

Skeleton

Full

GroundTruth

Color

Sentence：我 们 的 婚姻 是 幸福 的 ( Our marriage is happy. )

我 们 的 是 幸福
我 的们 是 的
我 们 的 们 拜访 的 的
我 们 的 婚姻 是 幸福 的

我 的 婚姻 是 幸福 的们

Video Sample 2

Depth

Skeleton

Full

GroundTruth

Color

Sentence：国家 稳定 是 幸福 的 基础 (National stability is the foundation of happiness. )

他 现实 是 邮递员
国家 基础是 幸福 的

我 稳定 的 幸福 的
国家 稳定 是 幸福 的 基础

国家 稳定 是 幸福 的 基础

Fig. 11. Visualization translation examples. Each colored block marks the respective generated word. The gray block is in accord with the ‘blank’ label, and
the red word denotes an incorrectly predicted word. The blue border marks the temporal boundary of the form word.

(a) Original features (b) GEU block 1 (c) GEU block 2 (d) GEU block 3

Fig. 12. Embedding visualization of the hierarchical GEU stacker of two USTC-CSL video examples displayed by t-SNE. Red, yellow, and blue points
represent skeleton, depth, and RGB features, respectively. In each feature space, skeleton features derived from coordinates (x, y, z) perform differently from
the other two; RGB features and depth features gradually draw closer together as they are extracted as two types of visual features.

2) Evaluation of the Graph Embedding Unit (GEU): We
define several variants of GEU and test them to verify the
effectiveness of GEU: GEU w/o C (removing Fcha in Eq. 3),
GEU w/o T (removing Ftm in Eq. 3), GEU w/o G (removing
GCN(·) in Eq. 6) and GEU w/o Skips (removing Pool(·) in
Eq. 7). Among all the variants of GEU , the worst performance
occurs on GEU w/o G. Compared with Intact GEU, the WER
of GEU w/o G increases 4.7 and 11.0 with Split I and Split
II. This indicates that without relational learning by GCN, the
capability of the model to capture multimodal complementar-
ity weakens rapidly. The second worst performance occurs on
GEU w/o C, especially on Split II (i.e., WER +10.4, CIDEr
-0.582, ROUGE-L -0.136 compared with Intact GEU), which
indicates that channel-wise learning is crucial to capture the
sign semantics. Compared with GEU w/o Skips, the WER of
Intact GEU drops 4.4 / 57.5 to 0.6 / 49.9 with Split I and Split
II, which verifies the positive impact of skip connections to
inhibit the network degradation as described in [6] (as shown
the discussion in Sec. III-B).

In addition, w/o GEU denotes using an eight-layer multi-
layer perceptron (MLP) to replace all the GEU modules in the
proposed MSeqGraph, which shows the worst performance in
Table III, e.g., WER and METEOR of w/o GEU on Split I are
worse (+5.7 and -0.157) than Intact GEU. It demonstrates the
merit of the GEU.

TABLE IV
EVALUATION OF GEU BLOCKS IN THE GEU STACKER

Blocks WER(%)↓ CIDEr↑ BLEU-1↑ ROUGE-L↑ METEOR↑
Experimental Results on Split I

B = 0 6.3 9.020 0.942 0.958 0.653
B = 1 4.1 8.997 0.966 0.965 0.690
B = 2 1.7 9.493 0.986 0.989 0.755
B = 3 0.6 9.666 0.995 0.995 0.810
B = 4 5.0 8.497 0.950 0.962 0.633

Experimental Results on Split II
B = 0 59.1 0.705 0.467 0.498 0.201
B = 1 57.1 0.588 0.458 0.496 0.181
B = 2 52.4 0.885 0.501 0.552 0.211
B = 3 49.9 1.061 0.531 0.566 0.234
B = 4 62.5 0.458 0.436 0.433 0.171

3) Evaluation of GEU Blocks: We test the effect of the
GEU on feature embedding. As shown in Table IV, WER
achieves the best when three GEU blocks are stacked. We set
the empirical parameter of B = 3. The t-SNE visualization
in Fig. 12 shows the feature distribution of each GEU block.
We randomly select a batch of samples of the testing set on
USTC-CSL Split I. As shown in Fig. 12(a), the distributions
of the original modalities are separated from each other in
the feature space; in Fig. 12(b), (c) and (d), RGB and depth
features are aggregated into a close spatial distribution, where
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TABLE V
EVALUATION OF THE GEU AND ALTERNATIVES ON USTC-CSL

Modules WER(%)↓ CIDEr↑ BLEU-1↑ ROUGE-L↑ METEOR↑
Experimental Results on Split I

MLP 6.3 9.020 0.942 0.958 0.653
MFB 5.9 8.778 0.947 0.953 0.658
LMF 5.0 8.823 0.962 0.961 0.661
GEU 0.6 9.666 0.995 0.995 0.810

Experimental Results on Split II
MLP 59.1 0.705 0.467 0.498 0.201
MFB 58.8 0.495 0.429 0.468 0.147
LMF 62.6 0.495 0.474 0.473 0.173
GEU 49.9 1.061 0.531 0.566 0.234

skeleton features perform very differently. This is attributable
to the characteristics of multimodal data in which the RGB and
depth features belong to visual cues and are even extracted by
the same ResNet-18 model [6]. In contrast, skeleton features
are extracted from coordinate data by the proposed Skeleton-
GCN model.

4) Evaluation of the GEU and Alternatives: We compare
the GEU with some existing alternatives, such as MLP,
MFB [46] and LMF [48]. Multi-layer perceptron (MLP) is
a simple but effective deep model, whose performance can
be regarded as a baseline for reference. Multimodal factorized
bilinear (MFB) [46] factorizes the projection matrix into two
low-rank matrices and designs the bilinear pooling with a co-
attention mechanism to aggregate multimodal features. Low-
rank multimodal fusion (LMF) [48] decomposes the multi-
modal mapping weight into a set of modality-specific low-rank
factors, so that the fusion output can be directly computed
without explicitly tensorizing the unimodal representations.

We replace the proposed GEU module with MLP, MFB
and LMF respectively, and the results are shown in Table V.
Since MFB and LMF were originally proposed to tackle
dual-stream fusion, they performed well at the correlation
calculation of cross-modal vector pairs. However, compared
with MLP, the performances of MFB and LMF are not
significantly improved, and even LMF (WER 62.6) performs
far worse than others on Split II. Similarly, although MFB
achieves WER to 58.8 on Split II, it lacks advantages on
Split I. In contrast, the GEU fuses feature streams by graph-
based embedding, which enables complementary cues to fully
interact among multiple modalities. Thus, our method has
significant advantages in all metrics and maintains robustness
over both split tasks.

C. Comparison with State-of-the-art Methods

We compare the proposed model MSeqGraph with the
existing approaches: LSTM&CTC [64], ELM [69], S2VT [65],
HRNN [68], HRNE [66], MFB [46], CTF [11], HLSTM [10],
WIC-NGC [67], CTM [13], HRF [14], PTE [70], LMF [48]
and KA-JointCTC [15] on the USTC-CSL dataset; MLP,
MFB [46], LMF [48], SRT [71], EA [72], VMFA [73],
SDM [74], PTE [70] and CTM [13] on the BOSTON-104
dataset.

1) Experiments on USTC-CSL: The experimental results
are listed in Table VI. The classic encoder-decoder frame-
work is widely used in sign language translation, such as
S2VT [65], which is a classic encoder-decoder model based
on two-layer LSTMs and the expanded version S2VT-3L [65],
hierarchical RNN - HRNE [66], HRNN [68] and hierarchical
LSTM - HLSTM [10]. LSTM&CTC [64] is another classic
framework with LSTM encoding and CTC decoding. KA-
JointCTC [15] proposes a pyramid BiLSTM to encode key
actions, and aggregates both CTC decoding and LSTM decod-
ing to generate the sentence. WIC-NGC [67] designs multiple
classifiers; each classifier outputs only one word or n-gram
phase and all the outputs combine a sentence. Among the
above methods, WIC-NGC achieves the best performances
of WER 50.9, BLEU-1 0.505, GOUGE-L 0.537 on Split II.
Compared with the above mentioned works, we embed rela-
tional graph learning to optimize the feature embedding phase.
The proposed MSeqGraph achieves the best performances,
including dropping WER by 1.0 compared to WIC-NGC on
Split II. The obvious performances are shown on Split I.

We also compare with some typical fusion methods, such
as S2VT-Fusion [65], CTM [13], ELM [69], CTF [11] and
HRF [14]. CTM [13] adopts element-wise summation as
the fusion strategy. ELM-Early [69] directly concatenates
features and ELM-Late [69] fuses probability scores from
multiple ELM models. CTF [11] explores feature fusion and
score fusion. In contrast, we aggregate multimodal cues by
graph learning. We employ the graph-based stack (GEU-based
stacker) to model multimodal correlation for feature embed-
ding. MSeqGraph performs the best on USTC-CSL Split I,
e.g., WER 0.6, CIDEr 9.666, BLEU-1 0.995, GOUGE-L 0.995.
This indicates that learning cross-modal complementarity in a
gradual aggregation manner takes effect. In addition, USTC-
CSL Split II offers a challenging task by which to evaluate
the unseen sentence translation. Even though, as shown in
Table VI, our work performs better than the others, especially
within CIDEr 1.061 and ROUGE-L 0.566 on Split II.

We further compare with some fusion methods (MFB [46],
LMF [48], CTM-Fusion [13], and PTE [70]) that use the
same inputs as our approach. Here, MFB [46] is used to embed
bilinear pooling into a co-attention mechanism for multimodal
fusion. LMF [48] leverages low-rank weight tensors to make
multimodal fusion efficient, which achieves the best WER 5.0
on Split I among the compared fusion methods. Our graph-
based GEU module considers a wider temporal range in one
calculation, which takes all the multimodal sequential frames
in a clip as nodes and infers the correlation of all the nodes
in the graph. As an extension of CTM [13], CTM-Fusion
first independently learns short-term temporal cues in each
modality, and then weights summed multimodal features for
sentence translation, which improves WER from 61.9 to 52.7
on Split II compared to CTM. PTE [70] proposes paral-
lel CNN and LSTM to encode and concatenate multimodal
features. Compared with the simple fusion operation (e.g.
concatenating or summation) in PTE and CTM-Fusion, our
graph-based GEU module attempts to learn the advanced
relation in the graph, leading to great improvement on WER,
especially on Split I.
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TABLE VI
PERFORMANCE COMPARISON ON THE USTC-CSL DATASET

Methods Multimodal Inputs
Split I (Signer Independent Task) Split II (Unseen Sentence Task)

WER(%)↓ CIDEr↑ BLEU-1↑ ROUGE-L↑ METEOR↑ WER(%)↓ Acc-w↑ CIDEr↑ BLEU-1↑ ROUGE-L↑ METEOR↑
LSTM&CTC [64] RGB 11.9 8.632 0.936 0.940 0.646 75.7 0.332 0.241 0.343 0.362 0.111
S2VT [65] RGB 25.5 8.512 0.902 0.904 0.642 67.0 0.457 0.479 0.466 0.461 0.189
S2VT-3L [65] RGB – 9.344 0.966 0.970 0.739 68.0 0.374 0.504 0.373 0.406 0.149
HRNE [66] RGB – 8.907 0.935 0.938 0.683 63.0 0.459 0.476 0.463 0.462 0.173
HLSTM [10] RGB 10.7 9.019 0.942 0.944 0.699 66.2 0.482 0.561 0.485 0.481 0.193
KA-JointCTC [15] RGB 9.1 – – – – 59.4 – – – – –
WIC [67] RGB – 9.420 0.982 0.980 0.729 53.2 – 0.760 0.483 0.514 0.219
WIC-NGC [67] RGB – 9.416 0.979 0.979 0.725 50.9 – 0.641 0.505 0.537 0.223
CTF [11] RGB 11.2 – – – – – – – – – –
CTM [13] RGB – – – – – 61.9 – – – – –
HRNN [68] skeleton – 8.868 0.930 0.930 0.684 102.0 0.128 0.032 0.299 0.091 0.279
S2VT-Fusion [65] RGB, skeleton – 9.549 0.984 0.984 0.793 73.2 0.406 0.335 0.419 0.407 0.150
ELM-Early [69] RGB, skeleton – 8.101 0.874 0.874 0.559 96.8 0.367 0.240 0.348 0.352 0.116
ELM-Late [69] RGB, skeleton – 9.462 0.979 0.970 0.760 98.7 0.175 0.028 0.376 0.388 0.120
HRF [14] RGB, skeleton – 9.665 0.993 0.994 0.817 67.2 0.445 0.398 0.450 0.449 0.171
MFB [46] RGB, depth, skeleton 5.9 8.778 0.947 0.953 0.658 58.8 0.410 0.495 0.429 0.468 0.147
CTM-Fusion [13] RGB, depth, skeleton 8.1 8.316 0.928 0.936 0.615 52.7 0.477 0.869 0.486 0.513 0.223
LMF [48] RGB, depth, skeleton 5.0 8.823 0.962 0.961 0.661 62.6 0.429 0.495 0.474 0.473 0.173
PTE [70] RGB, depth, skeleton 14.6 6.343 0.837 0.893 0.496 58.9 0.314 1.053 0.388 0.500 0.168
Our Method RGB, depth, skeleton 0.6 9.666 0.995 0.995 0.810 49.9 0.485 1.061 0.531 0.566 0.234

TABLE VII
PERFORMANCE COMPARISON ON THE BOSTON-104 DATASET

Methods Input Data DEL↓ INS↓ SUB↓ WER(%)↓
MLP Frames+HP 23 14 22 34.95
MFB [46] Frames+HP 20 8 18 27.37
LMF [48] Frames+HP 15 13 15 26.85
SRT [71] Frames+HP+HV+HT – – – 17.90
EA [72] Frames 40 9 18 30.34
VMFA [73] PCA-Hand – – – 28.65
SDM [74] Frames+HT+PCA-Hand 12 8 15 19.66
PTE [70] Frames+HP 35 6 9 28.47
CTM [13] Frames+HP 32 17 11 36.74
Our Method Frames+HP 18 3 6 15.25

‘HP’, ‘HV’ and ‘HT’ denote the features of hand-positions, hand-velocities
and hand-trajectories respectively.

Compared with the above methods, our method achieves
better performance for the following reasons. First, existing
methods (e.g., S2VT [65], HRNE [66], HLSTM [10], WIC-
NGC [67], CTF [11], CTM [13], and KA-JointCTC [15])
merely use visual data, while multi-source cues (i.e.,
RGB/depth images and skeleton coordinates) are introduced
into SLT in our method to eliminate the negative effect of
data noise. Second, for multimodal methods (e.g., S2VT-
Fusion [65], ELM [69], and HRF [14]) tackling vision and
skeleton data, the skeleton coordinates are concatenated into
a vector. In contrast, we design a skeleton GCN to encode
3D coordinates, which fully explores the spatial relation
among joints. Finally, existing fusion methods (e.g., S2VT-
Fusion [65], ELM [69], HRF [14], and CTM-Fusion [13])
usually regard multimodal fusion and sequence modeling as
two independent processes, which ignores fine-grained cross-
modal complementarity along the frame sequence. However,
the proposed graph-based embedding simultaneously solves
multimodal fusion and temporal learning problems, which
provides more robust representations of sign videos.

2) Experiments on BOSTON-104: We compare our method
with several typical multimodal embedding statics (i.e. MLP,
MFB [46], LMF [48]); in this case, we remain the MSeqGraph
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Fig. 13. The distributions of word properties and recognition accuracies on
the USTC-CSL dataset - Split II. Here, only the words appearing in the test
set are counted.

framework unchanged, but modify the embedding or fusion
modules. We also compare with the existing SLT works
(SRT [71], EA [72], VMFA [73], SDM [74], PTE [70],
and CTM [13]) to evaluate the sign language recognition
performances on BOSTON-104. As shown in Table VII, our
method achieves the best WER, which is 2.65 better than
SRT [71] (the best result in the comparisons). In EA [72] and
VMFA [73], the sign frames are cropped into a local area only
covering the hands, whose performances are worse than most
methods, especially on DEL. This observation indicates that in
addition to the hand area, arm posture and facial expressions
are also important for sign language recognition. SRT [71]
and SDM [74] extract manual features from hand-position,
hand-velocity and hand-trajectory data, which are weaker than
the non-manual representations. PTE [70] and CTM [13]
achieve better performances than other compared methods on
the SUB metric, while their DELs are far worse than ours,
which indicates that our method decodes fewer redundant
words. In addition, fusion methods (e.g., MLP, MFB [46],
LMF [48], SRT [71], SDM [74], PTE [70], and CTM [13])
fuse multiple feature streams without temporal alignment.
MSeqGraph extracts the multimodal features at the same
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level, and adopts graph-based embedding to learn fine-grained
multimodal complementarity along the timeline, so as to
obtain a more compact, complementary and informative sign
representation.

D. Discussion of the Classification Accuracy of Part-of-
Speech

To deeply investigate the model’s word-level recognition
accuracy, we conduct our test on the USTC-CSL dataset -
Split II, which is more challenging with unseen sentences
in real-world applications. As shown in Fig. 13, we display
the distribution of word properties in the training subset and
recognition accuracies of words in the testing subset. As shown
in Fig. 13 (b), the recognized accuracy of pronouns, verbs,
and form words is significantly higher than adjectives and
nouns. This may be because pronouns, verbs, and form words
frequently appear during training. However, nouns appear
more frequently than adjectives, while their accuracy is lower.
It seems that the complexity of nouns is more difficult to solve
than adjectives. To summarize, while the distribution of words
is unbalanced, this challenge needs to be explored.

V. CONCLUSION

In this paper, we propose a graph-based multimodal se-
quential embedding graph (MSeqGraph) network to solve
sign language translation with multimodal cues. The pro-
posed MSeqGraph model consists of channel-wise embedding,
temporal-wise embedding, and multimodal relational embed-
ding in a graph embedding unit (GEU). In the GEU, parallel
channel-wise and temporal-wise convolutions are embedded
into the GCN calculation. The GEU captures intra-modal and
inter-modal modal complementarity by constructing temporal
neighborhood edges and cross-modal edges. In addition, we
exploit a hierarchical GEU stacker to further leverage dense
multimodal cues. After that, we obtain a new integrated
feature sequence along the temporal dimension from RGB,
depth images, and skeletal data. We utilize the CTC optimizer
to decode the sentence. Experiments on two benchmarks
demonstrate the effectiveness of the proposed MSeqGraph and
show that exploiting multimodal cues contributes to a better
representation and improves performance.
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[43] J.-M. Pérez-Rúa, V. Vielzeuf, S. Pateux, M. Baccouche, and F. Jurie,
“MFAS: Multimodal fusion architecture search,” in IEEE Conf. Com-
puter Vision and Pattern Recognition (CVPR), 2019, pp. 6966–6975.

[44] N. C. Camgoz, O. Koller, S. Hadfield, and R. Bowden, “Multi-channel
transformers for multi-articulatory sign language translation,” in Euro-
pean Conf. Computer Vision (ECCV), 2020, pp. 301–319.

[45] K. Yin and J. Read, “Better sign language translation with stmc-
transformer,” in Int. Conf. Computational Linguistics (COLING), 2020,
pp. 5975–5989.

[46] Z. Yu, J. Yu, J. Fan, and D. Tao, “Multi-modal factorized bilinear pooling
with co-attention learning for visual question answering,” in IEEE Int.
Conf. Computer Vision (ICCV), 2017, pp. 1821–1830.

[47] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.-P. Morency, “Tensor
fusion network for multimodal sentiment analysis,” in Conf. Empirical
Methods in Natural Language Processing (EMNLP), 2017, pp. 1103–
1114.

[48] Z. Liu, Y. Shen, V. B. Lakshminarasimhan, P. P. Liang et al., “Efficient
low-rank multimodal fusion with modality-specific factors,” in Annual
Meeting of the Association for Computational Linguistics (ACL), 2018,
pp. 2247–2256.

[49] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing
with graph lstm,” in European Conf. Computer Vision (ECCV), 2016,
pp. 125–143.

[50] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using
gated graph neural networks,” in Annual Meeting of the Association for
Computational Linguistics (ACL), 2018, pp. 273–283.

[51] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in Int. World Wide Web
Conf. (WWW), 2019, pp. 417–426.

[52] M. Li, S. Chen, Y. Zhao, Y. Zhang, Y. Wang, and Q. Tian, “Dynamic
multiscale graph neural networks for 3d skeleton based human motion
prediction,” in IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 214–223.
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