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In sign language recognition (SLR) with multimodal data, a sign word can be represented by multiply features,

for which there exist an intrinsic property and a mutually complementary relationship among them. To fully

explore those relationships, we propose an online early-late fusion method based on the adaptive Hidden

Markov Model (HMM). In terms of the intrinsic property, we discover that inherent latent change states of

each sign are related not only to the number of key gestures and body poses but also to their translation

relationships. We propose an adaptive HMM method to obtain the hidden state number of each sign by

affinity propagation clustering. For the complementary relationship, we propose an online early-late fusion

scheme. The early fusion (feature fusion) is dedicated to preserving useful information to achieve a better

complementary score, while the late fusion (score fusion) uncovers the significance of those features and

aggregates them in a weighting manner. Different from classical fusion methods, the fusion is query adaptive.

For different queries, after feature selection (including the combined feature), the fusion weight is inversely

proportional to the area under the curve of the normalized query score list for each selected feature. The whole

fusion process is effective and efficient. Experiments verify the effectiveness on the signer-independent SLR

with large vocabulary. Compared either on different dataset sizes or to different SLR models, our method

demonstrates consistent and promising performance.
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1 INTRODUCTION

Vision-based sign language recognition (SLR), which facilitates communication between deaf-
mute and normal people with less sign language background, is an emerging problem in areas
such as human-computer interaction, computer vision, and pattern recognition (Kurakin et al.
2012; Cheng et al. 2016). It has attracted increasing interest on the topic of activity understanding
and enhancement in video (Escalera et al. 2014; Alon et al. 2009; Pfister et al. 2013; Lin et al. 2017).

The SLR problem is still challenging due to several complex factors: subtle tempos and styles
of articulation in gesture variation, low resolution of two hands in videos, cultural and individual
habits of signers, noise of camera channels, and out-of-vocabulary motion disturbance (Neverova
et al. 2016). Its application requires real-time efficiency and robustness on variable observation
conditions, scenarios, and sign-independent tests. To effectively mine the rule of gesture variation
without any prior knowledge of sign and signer, both massive training samples and an effective
learning model are needed. However, in real applications, it is difficult to acquire massive samples
of sign language. Current works are usually evaluated on limited data collections with few samples
for each sign word. In this article, we focus on the SLR problem on a large vocabulary with few
training samples. Our dataset contains 370 Chinese language signs, and each sign only has 20
training samples.

Essentially, SLR is a sequence learning problem. In terms of sequence learning, many meth-
ods and models have been proposed, such as Dynamic Time Warping (DTW) (Salvador and Chan
2007; Celebi et al. 2013), Support Vector Machine (Sun et al. 2015), Curve Matching (Lin et al.
2014), Hidden Markov Model (HMM) (Wang et al. 2015; Guo et al. 2016; Zhang et al. 2016), and
various popular neural network models (NN) (Huang et al. 2015; Wu et al. 2016b; Neverova et al.
2016; Liu et al. 2016). With those efforts, great success has been made. Among the above models,
NN has demonstrated promising performance in many computer vision areas, such as image clas-
sification (Krizhevsky et al. 2012), video event understanding (Yang et al. 2016), action recognition
(Feichtenhofer et al. 2016), outdoor navigation (Ran et al. 2017), and so forth. But the precondition
of the NN model is a large number of training samples. In the case of a large vocabulary with very
few training samples per sign word, NN is not a good choice. Considering the limited training data
in our problem, we choose another excellent model, the HMM model, as the baseline framework
for our SLR problem, witnessing its great success in speech recognition.

Each sign has various potential cues among multimodal features. To further improve the recog-
nition precision, we explore the cues from two different perspectives: intrinsic property and mutu-
ally complementary relationship. (1) For intrinsic property, the HMM model is adopted to recover
hidden variation of tempos and styles of gesture and action. (2) For complementary relationship,
we take the fusion idea into the SLR problem. Current research on fusion for SLR is still at a prelim-
inary stage. State-of-the-art fusion technologies still suffer some limitations for the SLR problem
(Belongie et al. 1998; Jain et al. 2005; Khan et al. 2012a). For instance, ineffective feature learning
is irreversible, such as graph-based methods (Liu et al. 2011; Wang et al. 2012a); the fixed learned
weight of each feature or classification model for different queries is not fair (Zhang et al. 2012;
Zheng et al. 2015); the weight learning process based on multiple classifier integration is somewhat
time-consuming (Terrades et al. 2009); and so forth. Among them, the difficulties of multimodal
feature fusion in SLR are mainly as follows:

• At first, the simple combination of feature fusion may not necessarily lead to a better result
than either single feature. For example, in our article, the SP feature relates to a distance
vector of a 3D coordinate system, while HOG is a visual feature to describe hand sharp.
As shown in Figure 1(d), the combined feature (SP-HOG) containing a “bad” result of the
HOG feature may drag down the total performance. To address this problem, we proposed
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Fig. 1. Multiple feature fusion in SLR. Each symbol on the curves (normalized sorted score lists) marks the
correct sign. From (a), (b), and (c), we can observe that a “good” score list is inversely proportional to its
curve area. But either feature or score fusion may introduce errors, as shown in (d), which is a “bad” fusion
with the combined feature “SP-HOG.” In the article, we try to eliminate negative effects among features and
combine the merits of two fusion phases (both early and late) to find a “good” fused list.

a feature selection strategy that evaluates characteristics of features (including combined
feature) and selects appropriate to-be-fused features.

• Second, for a query, it is important to determine its reasonable scores (relevance proba-
bilities) under different signs. It is nontrivial to adaptively set the model parameters for
different signs. The number of hidden variation states in each sign’s model indicates key
changes of gesture and action. We propose an HMM-state adaptation to determine the state
number for each sign model. Then we can adaptively build a learning model of each sign
and obtain a score list of the query under these sign models.

• Third, due to individual habit mode and the complexity of motion variation, it is difficult
to decide which is always the best feature or score learning model at any query time. As
shown in Figure 1, SP is not always the “good” feature on every sign word. Sometimes the
score-level performance of SP is better than HOG, but sometimes it is worse. Thus, for a
query, we try to realize a query-adaptive score fusion, which query-adaptively preserves
useful information at the feature level, assigns appropriate weight at score level, and finally
utilizes their merits to integrate the final score.

Therefore, to address the above fusion difficulties, motivated by the score-level late fusion
(Zheng et al. 2015), we target SLR and propose an online early (feature)-late (score) fusion frame-
work to effectively utilize both low-level features and high-level decision scores. Actually, our
fusion is based on the idea that if the “bad” one greatly drops down the concatenated feature’s
precision, we drop it and select its complementary (concatenated feature in the early stage) to re-
place it, and further explore the high-level complementary again in the score fusion learning. The
proposed score fusion is query adaptive, unsupervised, and efficient.

As shown in Figure 2, there are four modules in our framework: (1) Early feature fusion: we
consider the combined feature, such as SP-HOG in Section 4.1. (2) HMM-state adaptation and
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Fig. 2. The framework of our early-late fusion method. At first, we implement the early fusion with RGB-
D feature concatenation. Then HMM state adaptation is proposed to adaptively build the learning model
of each sign word. After feature selection, we get the score lists of to-be-fused features. In the late fusion
scheme, a “good” score list accompanies less area under the score curve than a “bad” one, especially at the
front of the score curve with a much steeper shape. We assign the good score list with a large weight and
vice versa.

feature selection: we construct our adaptive HMM classifiers under each feature. After feature
selection, the probability of query O related to sign words is learned and taken as a score list,
namely, a relevance vector. Thus, we obtain multiple to-be-fused score lists. (3) Query-adaptive
weight learning: we measure the contribution degrees (weights) of score lists with query O itself.
As shown in Figure 1, for a “good” feature, its fusion weight is inversely proportional to the curve
area under the O’s normalized query score list. The “good” sorted score list always has a relative
steep curve, while the “bad” always slowly decreases. This fusion process is query adaptive and
unsupervised. (4) Late score fusion: we fuse multiple score lists with assigned weights and rerank
signs by the fused score list.

In a nutshell, this article is dedicated to two issues: (1) finding out appropriate hidden states and
(2) utilizing multimodal features to improve the recognition precision. The rest of this article is
organized as follows: We briefly review related works in Section 2 and introduce our method in
Section 3. The experimental results are discussed in Section 4. Finally, we conclude the article in
the last section.

2 RELATED WORK

In this section, we review related work on three general aspects of the SLR problem. First, tradi-
tional approaches for SLR and action recognition are introduced. Then we list currently prevalent
SLR datasets and discuss their limitations. After that, some related multimodal fusion work is pre-
sented and analyzed.

2.1 SLR Model

To learn an effective SLR recognizer, Celebi et al. introduced a weighting scheme with computa-
tional complexity comparable to DTW (Salvador and Chan 2007) for gesture recognition (Celebi
et al. 2013). Lin et al. (2014) proposed a curve-matching method based on manifold analysis with
trajectories of gestures. To improve efficiency, Wang et al. (2015) proposed Light-HMM to select
the key frames through low rank approximating and determine the number of hidden states by a
Residual Sum of Squares (RSS) threshold. There are also some methods based on neural networks
(NNs) for SLR or some similar problems (Kong et al. 2016), such as convolutional neural network
(CNN) (Huang et al. 2015; Feichtenhofer et al. 2016; Camgoz et al. 2016), long-short-term memory
(LSTM) (Liu et al. 2016), recurrent neural network (RNN) (Neverova et al. 2013), deep dynamic
neural networks and HMM (DDNN) (Wu et al. 2016b), recurrent 3D convolutional neural network
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(R3DCNN) (Molchanov et al. 2016), temporal convolutions and bidirectional RNN (Pigou et al.
2016), and so forth. All of these prevalent models are effective in continuous sequence learning,
such as action and speech recognition domains. However, among these techniques, deep learning
methods usually require a large corpus of training data. In our task, the sign vocabulary is large,
while the samples per sign word are very few. It is infeasible to apply deep learning to our problem.

2.2 SLR Dataset

Cheng et al. pointed out that due to the lack of sign language expertise and the high cost of data col-
lection, training data are usually insufficient in real applications, especially on a large SLR vocabu-
lary (Cheng et al. 2016). As a result, current numerous public datasets in the vision field are usually
small in vocabulary size with relatively limited samples, such as the 10-Gesture dataset (Ren et al.
2011), the MSRC-12 Kinect gesture dataset (Fothergill et al. 2012), 12 American Sign Language
(ASL) gestures (Kurakin et al. 2012), 24 static ASL sign words (Dong et al. 2015), and 73 ASL signs
but with signer-dependent tests (Sun et al. 2013). Even the most popular and well-known gesture
dataset, the ChaLearn 2014 dataset (Escalera et al. 2014), only contains 20 gestures. Insufficient
data had become a bottleneck for SLR development. ChaLearn 2016 has released its new datasets,
isolated and continuous gesture recognition databases, which contain 249 gestures performed by
21 different individuals (Wan et al. 2016). Besides, Wang et al. experimented on a 1,000 Chinese
Sign Language (CSL) dataset (Wang et al. 2015). There are also some sentence datasets. For in-
stance, Sun et al. (2015) experimented on an 63-sentence dataset, in which each sentence consisted
of two to four sign words. It totally contains 28 sign words. In this article, the involved dataset
contains 370 Chinese language signs and each sign only has 20 training samples.

2.3 Multimodal Fusion

To explore the complementary SLR learning models, some fusion methods based on multimodal
features have pushed the state of the art forward (Ye et al. 2017). Classical multiple feature fusion
can be divided into early fusion (Belongie et al. 1998; Khan et al. 2012a, 2012b; Liu et al. 2015; Sun
et al. 2016; Wang et al. 2017) and late fusion (Jain et al. 2005; Terrades et al. 2009; Kittler et al.
1998). The early fusion is conducted on the feature level, while the late fusion is conducted on the
decision or score level. For late fusion, many efforts have been made to model the distribution of
matching similarity (Nandakumar et al. 2008), classifier weighting (Terrades et al. 2009; Kittler et al.
1998), graph-based learning (Liu et al. 2011; Wang et al. 2009, 2012a), and so forth. But there still
exist some defects: (1) The fixed learned parameters for different queries are not flexible; (2) some
above works consume much more time on fusion optimization with complex computation; and
(3) more importantly, in some models, ineffective features may dominate the fusion and drop down
the accuracy. Once all features without feature preselection have been taken into account, the
fusion process is irreversible. The negative effect of bad features sometimes cannot be eliminated,
such as graph-based methods. Besides the above mentioned work, neural network models are also
used to perform feature fusion (Wu et al. 2014, 2016a). Wu et al. designed an end-to-end deep
learning method for fusing various features (Wu et al. 2014) and further proposed a hybrid deep
learning framework integrating both CNN and LSTM to learn multistream multiclass score fusion,
which not only weighted the multistream networks for each class but also explored the interclass
relationship (Wu et al. 2016a).

In SLR, increasing efforts are focused on the fusion of multimodal features too. Automatic sign
language translation was traditionally based on visual recognition techniques (Zhang and Hua
2015; Zhang et al. 2014), until the popularity of Kinect-style depth sensing cameras (Zhao et al.
2014; Cai et al. 2016). In this view, Wang et al. (2015) combined features by skeleton pair feature (SP)
and hand HOG feature (HOG) based on the HMM model. As for neural network models, Wu et al.
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(2016b) embedded two feature extractor models (i.e., a Deep-Belief Network (DBN) designed for
skeletal dynamic data and a 3D CNN for depth and RGB images) into an HMM model to effectively
fuse the multimodal gesture datastream. Neverova et al. employed a multiscale and multimodal
neural network, termed ModDrop, which targets learning cross-modality correlations between
representations of multiple modality channels (Neverova et al. 2016). But constrained to our data
limitation, we don’t employ neural network fusion in the article. Overall, the work by Wang et al.
(2015) is an early fusion, the work by Wu et al. (2016b) is a late fusion, while the work by Neverova
et al. (2016) contains both early and late fusion steps based on neural networks. In this article, we
combine the merits of two fusion phases (both early and late) and propose an online fusion method
for the SLR problem.

3 OUR METHOD

Due to the sparsity of training data with very few samples per sign word, we choose the ex-
cellent GMM (Gaussian mixture model)-HMM (Hidden Markov Model) model, not the prevalent
neural network model, as the basic framework to solve the SLR problem. Given N signs’ train-
ing data, each sign n has its own HMM model λn (1 ≤ n ≤ N ), and thus we have N signs’ HMMs:
{λ1, λ2, . . . , λN }. We use the public toolkit1 to learn {λn }. The recognition process is implemented
by the famous Viterbi algorithm, and the most likely sign class λ∗ of observation sequence O is
obtained by Equation (1):

λ∗ = arдmax
{λ1,λ2, ...,λn, ...,λN }

P (λn |O ), (1)

where P (λn |O ) learned by the model λn (n = 1, . . . ,N ) indicates the relevance probability of query
O related to the nth sign.

To further optimize the HMM model, we describe the HMM states’ adaptation in Section 3.1 and
introduce the early-late fusion in Section 3.2.

3.1 Adaptive HMMs

An excellent HMM model is always tightly related to its inherent latent states. In our task, Chinese
signs are characterized by complex and distinct action transitions. It is preferred to adaptively set
the parameters of the recognizer models for different sign words. To get a more powerful sign
recognizer, we actively learn appropriate latent states for each sign word. We propose an HMM-
state adaptation to determine the respective state number Qn (1 ≤ n ≤ N ) for each sign model.

Before learning the HMM model λn , we divide data samples of signn into reasonable clusters and
determine transition types of gesture variation. We adopt affinity propagation (AP) clustering (Frey
and Dueck 2007) to adaptively obtain clusters on training data. For sign n, we evaluate the distance
function in the AP method on any two frame pairs of data samples to construct a frame-similarity
net. The net is viewed to obtain the mutual responsibility and availability log-probability ratios
between frames fj and fh . We maximize the similarity optimization function in AP to iteratively
find the best frame as exemplar fk , which has larger responsibility weight than all other frames,
until no more new exemplars appear. Thus, these best exemplars { fk } are taken as the cluster
centers and we can automatically obtain the number of clusters kn .

In our adaptive HMM model, M denotes the cluster number of data distribution in the GMM
phase and Q denotes the number of latent states in the HMM phase. Due to our rare samples and
chaos characteristic of Gaussian simulation, the effect ofM is not very obvious in the SLR problem.
Classical SLR approaches make M as a fixed value, and usually set M = 3. We follow the rule. The

1A public HMM Matlab package: http://www.cs.ubc.ca/murphyk/Software/HMM/hmm/html. Parameters Q and M in the

GMM-HMM model are discussed in the article. Other general parameters A, B , and π can be handled by this code package.
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Fig. 3. Cluster convergence on SP feature with similarity computing. The fitness value is a criterion as in the
literature (Frey and Dueck 2007). While it is closer to 0, the clustering convergence is much better. (a) Sign
“people.” (b) Sign “I.”

ALGORITHM 1: Early-Late Fusion Based on Adaptive GMM−HMM

Require: N signs’ training sample sets; Query O
Ensure: the sign class of query O

Training:

1: for sign n(1 ≤ n ≤ N ) under feature i (1 ≤ i ≤ m) do

2: Extract feature set F
(i )
n from sign n’s training set Set_On ;

3: Compute the number of clusters k
(i )
n on F

(i )
n by AP clustering2;

4: Q
(i )
n = k

(i )
n /M ;

5: Learn the GMM-HMM model λ
(i )
n = (A,B,π ) with Set_On and Q

(i )
n ;

6: end for

Testing:

7: Feature selection: e.g., remove “bad” HOG feature in the article;

8: Obtain O ’s remainingm′ score lists {s (i )
O
} by SLR models {λ(i )

n };
9: Calculate the fused score list s∗

O
by Equation (2)∼ Equation (5);

10: n∗ = argmax
n∗ ∈N

s∗
O

;

number Qn (1 ≤ n ≤ N ) is a dominant factor to reflect the number of key gestures and the kinds
of their translation relationships. Thus, with fixed M-component in the GMM phase of the model,
the number of variant states Qn is proportional to the number of clusters kn , where kn indicates
the total types of key changes of gesture and action. Our adaptive HMM is listed in steps 1 to 5 of
Algorithm 1.

2As in Frey and Dueck (2007), here we set similarity preference to media similarity in AP.
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The state adaptation has good performance on stability and robustness. On the one hand, the
clustering method converges quickly on the SLR dataset. For example, action variations of sign
“people” and “I” are very different. But as shown in Figure 3 on the fitness of net similarity, which
indicates the performance of convergence as in the literature (Frey and Dueck 2007), although sign
“I” has much more fluctuation than “people,” both of them obviously achieve convergence after 50
iteration times. On the other hand, with the same dataset, the number of converged clusters barely
changes by random tests. By LOO cross-validation, we have five groups of 370-sign CSL’s training
dataset. With 10 times on these five group datasets, in total 18,500 tests, only 20 tests, nearly 0.11%
of the generated cluster numbers, change and their difference is very slight. Thus, training data
samples can be preprocessed offline to determine {Q1,Q2, . . . ,QN }.

3.2 Early-Late Fusion

After determining the intrinsic hidden HMM state of each sign, we turn to explore the interrela-
tionship among multimodal features. The early fusion is directly implemented by concatenating
different features into a combined feature as detailed in Section 4.1. Here we construct the score
list under each feature at the decision level for late fusion and then filter, weight, and fuse score
lists to complete the whole method.

3.2.1 Score List. At first, we construct the score list of query O under each feature (including

the combined feature). Under feature F (i ) (i = 1, . . . ,m), we construct the score list (a score vector)

of query O by N signs’ adaptive HMM models {λ(i )
1 , λ

(i )
2 , . . . , λ

(i )
N
} in Equation (2):

s (i )
O
= [P (λ(i )

1 |O ), P (λ(i )
2 |O ), . . . , P (λ(i )

N
|O )], (2)

where P (λ(i )
n |O ) is obtained by the famous Viterbi algorithm on model λ(i )

n (n = 1, . . . ,N ). P (λ(i )
n |O )

indicates the relevance probability of query O related to the nth sign under feature F (i ) . Thus, we

obtainm score lists for query O : {s (1)
O
, s (2)

O
, . . . , s (m)

O
}.

3.2.2 Feature Selection. Second, previous early or late fusion works have revealed that a “bad”
feature could drop down the overall fusion performance. To avoid this situation, we propose a
feature selection strategy: if the performance of a combined feature is better than its single com-
ponent, we discard the “bad” component feature whose performance is worse than the combined
feature. Thus, we can retain the complementary relationship in the combined feature but filter the
redundant “bad” information.

In the article, we take the average variance of score lists on training data as our filter criterion.
Given a score list (score vector), its variance reflects the deviation degree from its own mean. A
smaller variance means that different signs have such similar scores in the list that cannot be dis-
tinguished. Instead, a larger variance indicates a good discrimination power. As shown in Figure 4,
we implement an LOO cross-validation experiment on a partial small-size dataset: the 50-sign CSL
dataset. Under different features, variances and average variances of score lists of a total of 1,000
training samples are respectively illustrated in Figures 4(a) and 4(b). The performance of variance
on feature HOG is not as good as the combined feature SP-HOG. Thus, we neglect HOG and select
SP and SP-HOG as to-be-fused features.

3.2.3 Query-Adaptive Weighting. Third, after feature selection, we assign weights to the re-

maining m′ score lists {s (i )
O
} . As shown in Figure 1 and Figure 2, the weight is inversely propor-

tional to the area of the normalized sorted score curve. The reason is that a good s (i )
O

is assigned a
larger weight, while it has a higher score on the correct class and meanwhile a much lower score
on other irrelevant classes. In other words, if the sorted score list has a much sharper curve, the
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Fig. 4. Variance curves and average variances of score lists of training samples under different features.
Feature SP is the best, followed by SP-HOG and HOG. (a) Variance comparison with an arranged sample
order that sorted on SP feature. (b) Average variance.

score list with its feature is much more discriminative and helpful. To be more specific, we sort s (i )
O

in decreasing order and conduct min-max normalization on it. We denote it as s
′(i )
O

and weight on

s
′(i )
O

(1 ≤ i ≤ m′) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

s
′(i )
O
=

s
′(i )
O
−mins

′(i )
O

maxs
′(i )
O
−mins

′(i )
O

w (i )
O
=

1/A
s
′ (i )
O∑

1≤i≤n
1/A

s
′ (i )
O

,

(3)

where A
s
′ (i )
O

represents the curve area of the ith score list s
′(i )
O

under feature F (i ) (1 ≤ i ≤ m′). It

means that the weighting process is tightly related to s
′(i )
O

, i.e., the query Q itself. The weighting
phase is query adaptive and unsupervised.

3.2.4 Score Fusion. Finally, we fuse m′ score lists. As the product rule usually results in better
performance than other rules in biometric multimodality fusion (Kittler et al. 1998; Zheng et al.
2015), the fusion formula is given in Equation (4) or a deformation Equation (5). By the public
Matlab code package in footnote 1, we directly implement Equation (5) in a sum format:

s∗O =
⎡⎢⎢⎢⎢⎣

n∏

i=1

(s
′(i )
O

)w
(i )
O

⎤⎥⎥⎥⎥⎦
, s .t .

n∑
i=1

w (i )
O
= 1 (4)

s∗O =
⎡⎢⎢⎢⎢⎣

n∑

i=1

w (i )
O
· log(s

′(i )
O

)
⎤⎥⎥⎥⎥⎦
, s .t .

n∑
i=1

w (i )
O
= 1. (5)

The most likely sign class of query O corresponds to the maximum value in s∗
O

:

n∗ = argmax
n∗ ∈N

s∗O = argmax
n∗ ∈N

[s∗O,n], (6)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 1, Article 8. Publication date: December 2017.



8:10 D. Guo et al.

Table 1. Details of the 370-Sign CSL Dataset

Signs Dataset Signer Number Repetition Time Sample Number

370
Training 4 5 20 × 370
Testing 1 5 5 × 370

where s∗
O

is an N -dim vector. Its n∗-th component s∗
O,n indicates the probability/relevance of query

O related to the n∗-th sign under feature F (i ) . The SLR model can be learned offline. Once each
sign’s SLR classifier is trained, our fusion method is performed online.

4 EXPERIMENTS

4.1 Experiment Setup

• Dataset

Our task focuses on a large vocabulary with limited training samples per sign word. We
experiment on the CSL dataset, which is a Kinect RGB-D dataset (Wang et al. 2015). As shown in
Table 1, it contains 370 signs played by five signers with five repetitions. The five signers contain
both female and male. Their heights and gesture habits are very different. In order to ensure
the signer-independent test, we adopt leave-one-out (LOO) cross-validation to test different SLR
models in our experiments.

• Feature representation from RGB-D data

Current RGB-D SLR datasets have color and depth feature modalities separately. We focus on
the consistency and complementary information between the two modalities and their relative
importance for SLR tasks. In this article, we take skeleton pair feature (D: 10-dim SP feature),
hand feature (RGB: 51-dim HOG feature by PCA dimensionality reduction), and SP-HOG (RGB-D:
61-dim combined feature) as basic features to represent each sign word.

Hand visual feature (RGB Data): HOG feature FHOG is extracted from image regions of two
hands in videos by using the self-adaptive skin model and depth constraint as in Wang et al. (2015).3

Skeleton pair feature (Depth Data): For depth data, we extract mutual distances of five skele-
ton points (head, left elbow, right elbow, left hand, and right hand) and transform them to a 10-
dimension SP distance feature FSP (Wang et al. 2012b). Each signer has different body size. To unify
gesture posture scales by different signers, we normalize each SP vector by its maximum value.
Then we can get each sign sample’s SP observation sequence OSP for SLR model training. This
feature is invariant to transformations of rotation, scaling, and translation.

Combined feature (RGB-D Data): We concatenate FHOG and FSP and denote the new vector
as the SP-HOG feature (61-dim combined feature). The SP-HOG feature is deemed as an early
fusion. The late fusion is detailed in Section 3.2.

• Data preprocessing

Dimensionality reduction on HOG feature: Since the dimension of the original HOG feature
is too high, PCA (Principal Component Analysis) is applied. We retain about 80% information
energy of the dataset by PCA and get the 51-dim HOG feature. To keep sign-independent tests, we
obtain the transform matrix on training data. When recognizing a testing sample, we transform
the query sample by the obtained matrix.

3In this article, we focus on fusion of multimodal features and make no intent to optimize feature extraction. The HOG

features in the article were originally extracted with OpenCV with basic parameters, while both the HOG feature and the

SP feature used in Wang et al. (2015) are further optimized versions, e.g., some invalid frames are removed.
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Data augmentation on feature SP: In our experiments, we enrich our limited training data
with data augmentation (Chatfield et al. 2014). In order to add appropriate noises and prevent over-
fitting, we explore a random Gaussian disturbance strategy on skeleton coordinates to augment
additional gesture position features.

As a 3D depth skeleton point (x ,y, z) collected by Kinect, we take the x coordinate as an example
to explain Gaussian disturbance, and y and z coordinates are similar. First, we check the range of
x in all training samples under each sign n: [xn

max , xn
min]. Here is Δxn = xn

max − xn
min . Then we set

a Gaussian random variable X ∼ N (0, (ηΔxn )2), where η is a disturbance parameter. In our tests,
we find that η = 0.01 is the best. Under sign n, an additional (x ′,y ′, z ′) coordinate of the skeleton
point is generated as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

x ′ = x + N (0, (ηΔxn )2)

y ′ = y + N (0, (ηΔyn )2)

z ′ = z + N (0, (ηΔzn )2).

(7)

If this augmentation is conductedN times, we can expand the original datasetN times. However,
we downsample every frame and augment the data by N = 1. It still has the same number of frames
but brings reasonable Gaussian disturbance into the data.

• Contrasted SLR approaches

We evaluate our approach on different data sizes and compare with other SLR approaches, such
as DTW (Salvador and Chan 2007; Celebi et al. 2013), GMM-HMM, and Light-HMM (Wang et al.
2015). And we also compare our fusion scheme with some fusion works, such as an early fusion
for SLR (Wang et al. 2015) and a late fusion (Zheng et al. 2015).

—GMM-HMM (Wang et al. 2015): A good parameter setting for traditional GMM-HMM is
Q = M = 3, where Q is the number of states in HMM and M is the number of mixture
models in GMM.

—Light-HMM (Wang et al. 2015): To trade off precision and runtime, Light-HMM selects key
frames and determines adaptive Q . Here M = 3 and Q is adaptive. To obtain the best per-
formance, we set LightHMM’s threshold ε0 = 0.001 and threshold λ to the average value of
the RSS score curve of parameter ε .

—DTW (Salvador and Chan 2007; Celebi et al. 2013): The DTW model is quite different form
HMM-based models. It does not calculate the probability of query O under each sign class.
DTW searches its nearest neighbor in the training dataset and defines the sign class of the
nearest neighbor as its class. Therefore, the score list by DTW is set as reciprocal of its
distances to all training samples.

4.2 Experiment with HMM-State Adaptation

We first test our adaptive HMM. The experimental result on the SP feature is shown in Table 2.
In our HMM, parameters Q and M are discussed. Our adaptation is HMM(Q) with adaptive Q and
M = 3. And we also test another adaptation by the HMM(M) with adaptive M and Q = 3.

Table 2 shows that adaptive HMM(Q) is the best. Light-HMM with a few key frames brings
down its precision. DTW is much more time-consuming than other HMMs. That is due to the fact
that DTW retrieves all training samples to decide its sign class, while HMMs just learn the score
of each sign. In our adaptive HMM, Q has much more influence than M . Q indicates the number
of latent states in the HMM phase and M indicates the number of clusters of data samples in the
GMM phase. The former hints at state changes and the later simulates data distribution. Due to
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Table 2. Performance of Our Adaptive HMM Compared to Other Methods under a Single
SP Feature on the 370-Sign Dataset

Methods Top 1 Top 5 Top 10 Testing Time (ms/sign)
DTW 31.59% 52.84% 62.45% 1,730

GMM-HMM 27.51% 53.84% 65.83% 159
LightHMM 21.96% 45.29% 63.22% 128

Our adaptive HMM(M) 28.10% 54.04% 66.62% 82
Our adaptive HMM(Q) 34.82% 61.29% 70.80% 88

Table 3. Fusion Types in Our Fusion Framework

Fusion I Fusion II Fusion III Our Fusion
Early fusion Late fusion Early-late fusion Feature selection + early-late fusion

SP-HOG SP ⊗ HOG SP ⊗ HOG ⊗ SP-HOG SP ⊗ SP-HOG
feature fusion score fusion (feature + score) fusion (feature + score) fusion

Table 4. Performance of Various Fusion Types on the
370-Sign Dataset

Feature
Recall @ R

R = 1 R = 3 R = 5
SP 34.82% 53.26% 61.29%

HOG 21.52% 34.03% 39.89%
Fusion I (Wang et al. 2015) 32.02% 45.71% 51.92%

Fusion II (Zheng et al. 2015) 41.21% 56.27% 62.75%
Fusion III 41.40% 56.74% 62.99%

Our fusion 45.32% 60.75% 67.34%

rare samples and chaos characteristic of Gaussian simulation, the effect of M is not very obvious in
our problem. ButQ is closely related to sign action change. Thus, we still choose adaptive HMM(Q)
as our adaptation strategy.

4.3 Comparison on Different Fusion Steps

Here we list different fusion strategies in Table 3. From the results on our signer-independent
dataset shown in Table 4, at Recall@R=1, the precision on the SP feature is 34.82% and the HOG
feature only achieves 21.52%. HOG has a negative fusion effect that leads to the precision of Fusion I
(early fusion) being less than that on a single SP feature. Fusion II (late fusion), Fusion III (simple
early-late fusion), and our fusion obtain notable improvements. Fusion II has already learned the
positive effect of complementarity of features.

Meanwhile, as shown in Figure 5, Fusion II and Fusion III achieve similar performances, but our
fusion consistently achieves the best performance. It makes a 13.30% improvement compared to
Fusion I, 4.11% compared to Fusion II, and 3.92% compared to Fusion III at Recall@R=1. Because
of that, our fusion compared to Fusion II and Fusion III further drops the negative effect of “bad”
single feature HOG.

4.4 Comparison on Different Dataset Sizes

We also evaluate on different sizes. We pick subsets of 370 sign words as small datasets, such
as the top 50, 100, and 200 words. As shown in Figure 6(a), with the increase of Recall@R, the
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Fig. 5. Recall@R on the 370-sign dataset.

Fig. 6. (a) Precision comparison of our fusion on different datasets. (b) Precision differences of our fusion to
Fusions I, II, and III at Recall@R=1.

precision steadily grows. On the other hand, when the sign word number increases, the perfor-
mance declines. The differences of our fusion to other fusion methods are shown in the Figure 6(b).
Our fusion still has good precision and stability. It basically improves by 3.92% to 17.20% on dif-
ferent dataset sizes.

4.5 Comparison on Different SLR Models

As for comparison on different SLR models, we also evaluate them on the datasets with 50 signs
and 370 signs, where the 50-sign dataset is the subset of the 370-sign dataset. As shown in Ta-
bles 5 and 6, the HOG feature still achieves poor performance in the SLR problem, especially on
the DTW model with the worst precision. Due to the poor performance of HOG, Fusion I (early
fusion) performs badly on the 50-sign dataset. On the 370-sign dataset, Fusion I sometimes im-
proves but is still unstable in most cases. Interestingly, Fusion II effectively makes use of HOG, the
precision of Fusion III is similar to Fusion II, and our fusion further raises the precision. In short,
our method achieves the best performance by exploring the merit of early-late fusion and utilizing
complementary.
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Table 5. Fusion Comparison on Different SLR Models with 50 Signs

DTW GMM-HMM
Light-HMM

(Wang et al. 2015) Our Adaptive HMM

Reall@1 Reall@4 Reall@1 Reall@4 Reall@1 Reall@4 Recall@1 Reall@4

SP 61.84% 82.08% 61.60% 88.96% 55.44% 82.00% 71.68% 93.60%

HOG 20.24% 39.68% 44.64% 68.64% 29.12% 55.92% 46.88% 68.24%

Fusion I (Wang et al.
2015)

22.88% 43.44% 58.40% 81.36% 50.40% 74.64% 58.96% 79.20%

Fusion II (Zheng
et al. 2015)

63.12% 82.96% 66.08% 84.96% 49.92% 75.76% 67.84% 87.12%

Fusion III 63.96% 83.76% 66.16% 86.88% 57.68% 80.08% 69.44% 87.36%

Our fusion 63.04% 83.04% 72.64% 90.40% 61.92% 83.52% 76.16% 91.84%

Table 6. Fusion Comparison on Different SLR Models with 370 Signs

GMM-HMM Light-HMM Our Adaptive HMM

Reall@1 Reall@3 Reall@5 Reall@1 Reall@3 Reall@5 Recall@1 Recall@3 Reall@5

SP 27.51% 45.56% 53.84% 21.96% 37.41% 45.29% 34.82% 53.26% 61.29%

HOG 21.38% 33.51% 39.61% 10.50% 19.29% 24.93% 21.52% 34.03% 39.89%

Fusion I (Wang et al.
2015)

32.00% 46.13% 52.63% 24.50% 38.49% 45.28% 32.02% 45.71% 51.92%

Fusion II (Zheng
et al. 2015)

37.46% 52.95% 59.39% 22.22% 36.23% 43.57% 41.21% 56.27% 62.75%

Fusion III 38.93% 54.42% 60.79% 29.04% 44.41% 51.72% 41.40% 56.75% 62.99%

Our fusion 41.50% 57.36% 63.91% 33.88% 49.64% 56.67% 45.32% 60.75% 67.34%

Table 7. Time Comparison on 50 Signs

Avg. Testing Time (s) DTW GMM-HMM Light-HMM Our Adaptive HMM
SP 1.730 0.088 0.128 0.159

HOG 8.495 0.123 0.399 0.179
Fusion I 9.025 0.124 0.217 0.156
Fusion II 0.014 0.011 0.011 0.011
Fusion III 0.015 0.011 0.011 0.011

Our fusion 0.014 0.011 0.011 0.011

Fusion time in this table merely indicates time of fusion computation.

Meanwhile, Table 7 shows the time cost of different SLR models and fusions. “Our fusion” and
“Fusion III” in the table denote the time of fusion computation in Section 3.2.4. DTW is still much
more time-consuming than other HMMs. The time cost of various HMMs is close. GMM-HMM has
a stable time cost with a fixed valueQ = 3. Under our dataset, although under a few key frames, the
time cost of LightHMM is higher than GMM-HMM, as its average adaptiveQ is nearly 4 to 5 times
of GMM-HMM’s Q . It has more complexity of adaptive state transition calculations compared to
GMM-HMM, and so does our adaptive HMM, which also has a variable Q . Anyway, score fusion
time is trivial compared to query time under different SLR models. The fusion computation is
efficient for online fusion.
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Table 8. Comparison on Different Settings of Late Fusion in
Our Fusion Framework

Datasize Precision/Time REF Our Fusion

50 signs
Fusion precision 75.76% 76.16%

Time (ms) 16.7 11.2

370 signs
Fusion precision 45.23% 45.32%

Time (ms) 34.6 21.6

Table 9. Recall@R Comparison Between Fusion III and Our Fusion

Datasize Method Recall@1 Recall@2 Recall@3 Recall@4 Recall@5

50 signs
Fusion III 69.44% 80.08% 85.12% 87.36% 89.12%

Our fusion 76.16% 85.92% 89.36% 91.84% 93.36%

370 signs
Fusion III 41.41% 51.54% 56.75% 60.11% 62.99%

Our fusion 45.32% 55.34% 60.75% 64.54% 67.34%

4.6 Extension on Different Early-Late Fusion Comparisons

At last, we compare two extensions of the early-late fusion framework. One is integrating the
reference strategy into our fusion, which is very effective in a late fusion method for image search
and person reidentification (Zheng et al. 2015). The other is more comparison between Fusion III
and our fusion.

Reference construction comparison: We extend the reference construction in Zheng et al.
(2015) into our fusion and abbreviate the extension as “REF.” Before score fusion, the sorted score

list s
′(i )

O
is subtracted by an irrelative reference list r (i )

O
(Zheng et al. 2015). Once picking up

irrelevant samples, we construct their sorted score lists {r }. Then s
′(i )
O

of queryO under the feature

F (i ) is calculated by Equation (8):

s
′(i )
O
= s

′(i )
O
− r (i )

O

s .t . r (i )
O
= argmin

r
(i )
O
∈ {r }
| |s ′ (i ) (u : v ) − r (u : v ) | |2, (8)

where u and v , respectively, denote the beginning and the end position of reference construction
on the score curve. We use parameter k in our SLR problem to denote the number of irrelevant
sign classes. Thus, v is the total number of sign words minus k . Our SLR dataset has very limited
samples and signs are not completely interrelated, and thus we merely pick up training samples
of the last ranked sign class as the irrelative samples. For 370 words, we set k = 1 and v = 369. In
our test experiments, u = 15 is a better parameter setting.

As shown in Table 8, REF and our fusion method have very close performance. Our fusion is
slightly better. This may be because due to the complex correlation among different signs, human
actions are not completely irrelevant in the real world. Reference construction does not work well
in our SLR model. Besides, REF takes an additional time cost on training sample retrieval and
reference computation, while our method is more efficient.

Comparison on different early-late frameworks (Fusion III vs. our fusion): Here we
give more details of our fusion compared to Fusion III. Without feature selection, Fusion III totally
fuses the score lists of features SP, HOG, and combined feature SP-HOG. With feature selection,
ours fuses score lists of SP and SP-HOG. As shown in Table 9 and compared in Tables 5 and 6,
Fusion III is already better than early fusion (Fusion I) and late fusion (Fusion II). But our fusion
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is still obviously better than all others, including Fusion III. It’s because only the early-fusion
framework cannot completely eliminate the overloading negative effects of “bad” features. Our
feature selection works well to avoid this and further promote the precision.

5 CONCLUSION

We propose an online fusion framework based on adaptive HMM for sign language recognition
to integrate early and late fusions. The HMM-state adaptation addresses temporal structure varia-
tion of individual habit mode and sign complexity under heterogeneous modalities. Early feature
fusion can extract complementary representations in terms of joint performance on a subset or
complete set of modalities. We propose an adaptive selection strategy to identify those features to
be fused. At last, on the score-level fusion, we further adaptively explore contexts of multimodal
features underlying the sorted scores in an unsupervised and query-adaptive manner. Experiments
demonstrate the effectiveness and efficiency of our approach.
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